Curriculum of Diploma Programme

in

Mechanical Engineering

Department of Science, Technology and Technical Education (DSTTE), Govt. of Bihar

State Board of Technical Education (SBTE), Bihar

Course	Category	Course Titles	Teaching & Learning Scheme (Hours/Week)					
Codes	of course			Instruction CI)	Lab Instruction	Notional Hours	Total Hours	Total Credits
			L	Т	(LI)	(TW+SL)	(CI+LI+TW+SL)	(C)
2425501	BEC	Industrial Engineering &Management (ELX, ELX (R), ME, ME (Auto))	02	01	-	02	05	04
2425502	PCC	Industrial Automation and Mechatronics	03	-	04	02	09	06
2425503	PCC	Hybrid Automobile Engineering	03	-	04	02	09	06
2400504	OEC	Open Electives* / COE (Basic -Any One)	03	-	04	02	09	06
2400505	NRC	Entrepreneurship Development & Start- ups (Common for All Programmes)	-	-	04	02	06	03
2425506	PSI	Summer Internship- II (After 4 th Sem) / Industrial Training (Common for all programmes)	-	-	02	04	06	03
2425507	PSI	Minor Project (Common for all programmes)	-	-	02	02	04	02
		Total	11	1	20	16	48	30

Semester – V Teaching & Learning Scheme

Note: Prefix will be added to course code if applicable (T for Theory Paper, P for Practical Paper and S for Term Work)

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies) Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

*: Artificial Intelligence (AI)/ IOT/ Drone Technology/ 3D Printing & Design/ Industrial Automation & Control/ Electric Vehicle/ Robotics

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

Semester - V Assessment Scheme

			Assessmen		nt Scheme (Ma	urks)			2
			Theory Asses (TA)	Theory Assessment		Term work & Self Learning Assessment (TWA)		Lab Assessment (LA)	
Course Codes	Category of course	Course Titles	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressiv e Lab Assessme nt (PLA)	End Laborator Y Assessme	Total Marks (TA+TWA+LA)
2425501	BEC	Industrial Engineering &Management (ELX, ELX (R), ME, ME (Auto))	30	70	20	30	-	-	150
2425502	PCC	Industrial Automation and Mechatronics	30	70	20	30	20	30	200
2425503	РСС	Hybrid Automobile Engg.	30	70	20	30	20	30	200
2400504	OEC	Open Electives* / COE (Basic -Any One)	30	70	20	30	20	30	200
2400505	NRC	Entrepreneurship Development & Start-ups (Common for All Programmes)	-	-	20	30	20	30	100
2425506	PSI	Summer Internship- II (After 4 th Sem) / Industrial Training (Common for all programmes)	-	-	20	30	20	30	100
2425507	PSI	Minor Project (Common for all programmes)	-	-	10	15	10	15	50
		Total	120	280	130	195	110	165	1000

Note: Prefix will be added to course code if applicable (T for Theory Paper, P for Practical Paper and S for Term Work)

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

*: Artificial Intelligence (AI)/ IOT/ Drone Technology/ 3D Printing & Design/ Industrial Automation & Control/ Electric Vehicle/ Robotics

Note:

• ETA & ELA are to be carried out at the end of the term/ semester.

• Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activiti.

:

A)	Course Code	: 2425501(T2425501/S2425501)
B)	Course Title	: Industrial Engineering & Management (ELX, ELX (R), ME, ME (Auto))
C)	Pre- requisite Course(s)	:

D) Rationale

Success and Growth of Manufacturing and Service sectors in general depend on the productivity and quality of production/services. Technical managers, engineers, plant operators, machine operators, supervisors and workers working in Manufacturing industries/Service sectors have to compulsorily meet set standards of production in terms of quality, quantity, cost safety and productivity so as to compete in domestic and international market. This is possible by exploiting the principles of industrial engineering. Industrial Engineering and Management enables diploma engineers to make the right decisions to optimize resource utilization by improving the productivity of the lands, buildings, people, materials, machines, money, methods effectively while maintaining the desired quality and cost. This course will help Diploma mechanical engineer to determine the standardized process, time for its completion known as work and time study, measuring the output in terms of productivity, evaluation of jobs, workers and determining the wages and incentives, measurement of quality of product. This course is also designed to develop understanding of various functions of management, role of workers and engineers and providing knowledge about safety and labor, industrial laws and management in different areas.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of the following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor, and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Apply different industrial functions, Plant layouts, Acts and Taxes in various industrial situations.
- **CO-2** Apply method study and work measurement techniques in industries and manufacturing plants.
- **CO-3** Correlate production planning, quality control, and their functions in manufacturing units.
- **CO-4** Apply the basic principles, approaches, and functions of management for various manufacturing situations.
- **CO-5** Apply material management and industrial hygiene approaches in manufacturing plants.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Outcomes(POs)								
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2	
CO-1	3	2	-	-	2	2	-			
CO-2	3	2	-	2	-	2	-			
CO-3	3	2	-	2	-	2	-			
CO-4	3	2	-	-	2	2	-			
CO-5	3	2	-	-	2	2	-			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

* PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course			Scheme of Study (Hours/Week)				
Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)	
		L	Т					
2425501	Industrial Engineering and Management	02	01	-	02	05	04	

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			Α	ssessment S	cheme (Mar	·ks)		
a		Theory Ass (TA		Self-Le Asses	Work & earning sment VA)	Lab Asse (L		ТА+ТWА+LA)
Course Code	Course Title	Progressive Theory Assessment	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (T
2425501	Industrial Engineering and Management	30	70	20	30	-	-	150

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction

(LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2425501

м	ajor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1b. TSO 1c. TSO 1d.	Explain industrial functions related to the given situation. Identify different types of plant layouts. Select site for the given situation. Explain acts and taxes relevant to the given industrial situation. Describe different types of Industrial disputes.	 Unit-1.0 Industrial Engineering 1.1 Need, role and benefits of Industrial Engineering 1.2 Principles of Industrial Engineering and its Historical developments 1.3 Industrial Functions-Design, Procurement, production, operation, installation, inspection, maintenance, marketing, etc. 	C01
	Identify relevant acts applicable for the given corporate situation. Identify relevant taxes applicable for the given business situation.	 1.4 Types of Industries/Business units 1.5 Plant layout and its types, Site selection 1.6 Industrial Acts & Taxes: Salient features of various acts pertaining to industry- The Factories Act 1948. Industrial Disputes Act 1947. The Workmen's Compensation Act 1923/1956. 	
TSO 2b. TSO 2c. TSO 2d. TSO 2e. TSO 2f. TSO 2g.	Apply methods of improving productivity for the given situation. Conduct method study to eliminate unnecessary operations in the given production situation. Use different flow charts and flow diagrams to study a process for improvement. Apply time study procedure required for work measurement in the given situation. Explain different allowances related to employees. Solve simple numerical problems related to Standard Time calculation. Explain basic concepts of Production study Apply work measurement techniques in the given organization to eliminate ineffective time	 Unit-2.0 Work and Method Study 2.1 Productivity; Standard of living; Method of improving Productivity: Objectives 2.2 Method Study: Definition; Objectives; Selection of a job for Method study; Basic procedure and tools to conduct Method study 2.3 Operation process chart; Flow process chart; Two handed process chart; Man Machine chart 2.4 String diagram and flow diagram. 2.5 Work Measurement: Definition: Basic procedure in making a time study 2.6 Calculation of standard time; Basic concept of Production study; Techniques of Work Measurement 	CO2
TSO 3b.	Explain major functions of production planning and control required in a production plant Use suitable methods of forecasting to estimate future demands in the given situation. Use routing and scheduling techniques to allocate resources effectively	 Unit-3.0 Production Planning and Control 3.1 Introduction; Major functions of Production Planning and Control 3.2 Forecasting and Methods of forecasting: Qualitative Methods and Quantitative Methods- moving average and exponential smoothing only (Related simple numerical); 3.3 Routing and Scheduling; Dispatching and Controlling 	

M	ajor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 3e. TSO 3f. TSO 3g. TSO 3h. TSO 3i. TSO 3j. TSO 3k. TSO 3l.	 quality of the given product and process(es). Identify advantages and disadvantages of statistical quality control. Apply the concepts of ISO 9001:2008 in quality management system. Outline the procedures for obtaining ISO certification. 	 3.4 Concept of Critical Path Method (CPM) and PERT; Simple related numericals 3.5 Types of Production: Mass Production, Batch Production and Job Order Production: Characteristics 3.6 Principles of Product Planning and Process Planning; 3.7 Quality Control: Definition; Objectives; Types of Inspection: First piece, Floor and Centralized Inspection; Advantages and Disadvantages; Statistical Quality Control; Concept of ISO 9001:2008, Quality Management System, Registration/Certification procedure; Benefits of ISO to the organization 	
	Enlist benefits of ISO to the organization. Describe the functions of Management.	Unit-4.0 Industrial Management	CO4
TSO 4b. TSO 4c. TSO 4d. TSO 4e. TSO 4f. TSO 4f. TSO 4h. TSO 4i. TSO 4j.	Compare the salient features of different types of organization. Implement F.W. Taylor's and Henry Fayol's in Management. Describe the roles and functions of a manager in an organization. Identify the type of leadership style required for the given situation.	 4.1 Concept of Management and its functions, Organization and Organizational Structure (organization chart of Govt. deptt., Industrial undertakings, private industries, etc.) 4.2 F.W. Taylor's and Henry Fayol's Principles of Management; Functions of Supervisor/Manager 4.3 Team Working and Leadership: Styles of Leadership; Qualities of a good leader; Motivation; Positive and Negative Motivation 4.4 Modern Management Techniques; Just in Time; Total Quality Management (TQM); Quality circle; Zero defect concept; 5S Concept 4.5 Human Resource Management (HRM): Objectives and Responsibility of HRMS; Selection Procedure; Training of Workers- Apprentice Training; On the Job training; 4.6 Wages and Salary; Component of Wages, Types of wages, Payment of Wages 4.7 Depreciation: Meaning of depreciation, Methods of calculating depreciation charges, obsolescence – definition and reasons. 4.8 Replacement economy: Reasons for replacement, installation and removal costs. 	
	machine/machine component. Describe the importance of material management.	Unit-5.0 Material Management and Industrial Safety	CO5

Diploma in Mechanical Engineering

М	ajor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 5b.	Identify different types of costs involved in production.	Material Management	
TSO 5c.	Calculate break even quantity of in the given production situation.	 Introduction: Purpose. Functions of material Management, Cost Accounting- Introduction & 	
TSO 5d.	Use purchase procedure for the procurement of the specified materials.	necessity, elements of cost – direct and indirect, variable and fixed, prime cost, overhead cost,	
TSO 5e.	Calculate EOQ of the given production situation.	total cost, marginal costing, break-even analysis.Purchase -Purchase Procedures, reordering cycle	
TSO 5f.	Describe various techniques of inventory management.	system, base stock and lead-time, inventory valuation, Economic order quantity (EOQ)	
TSO 5g.	Identify different material handling equipment.	 Store Management -stores procedures, layouts, safety provisions, inventory control techniques- ABC, VED, FIFO, and LIFO systems. Introduction to 	
TSO 5h.	List elements of industrial hygiene in the given situation.	Material handling and material handling equipment	
TSO 5i.	Identify the importance of plant safety.	Industrial Unions O. Cofety	
TSO 5j.	Identify the causes of accident and estimate the cost of accident.	Industrial Hygiene & Safety4. Industrial Hygiene: Methods of achieving	
TSO 5k.	Identify the ways to control and manage industrial waste.	 industrial hygiene. 5. Industrial safety: - Safety awareness of employees, use of various safety devices, responsibilities of employees and employer towards safety. 6. Accident: Causes and Cost of an Accident, Accident Proneness, Prevention of Accidents 7. Industrial waste control: - Types of industrial waste, problem of disposal, waste control programme, recycling and power of waste. 	

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: (Not Applicable)

- L) Suggested Term Work and Self Learning: S2425501 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - i. Identify the different industries nearby your city on basis small, medium and large scale with justification.
 - ii. Identify industries nearby your area on basis of high and low production capacity with justification.
 - iii. Select the relevant plant layout for particular industrial application with justification.
 - iv. List factors considered in selecting a job for time study
 - v. Identify the objectives of work study for a given situation.
 - vi. Give examples of different types of recording techniques in method study.
 - vii. Identify the types of allowances given for any industrial work with reference to time study method.
 - viii. Solve problems related to calculation of Normal and Standard time for a given work study problem.
 - ix. Describe the function of PPC in a given organization.
 - x. Describe job, batch and Mass production with one example each.

- xi. Draw flow process chart of a given industry.
- xii. Describe differences between inspection and quality control.
- xiii. Prepare list of control charts used for statistical quality control in any specific industry.
- xiv. Prepare p chart and c chart for a given industry specific problem.
- xv. Prepare process capability chart for a given case study of industry.
- xvi. Interpret the given control charts in statistical quality controls.
- xvii. Describe the functions of Management.
- xviii. Identify the type of leadership style required for the given situation.
- xix. Explain the concept of motivation with the examples of positive and negative motivations in an organization.
- xx. Apply the concepts of modern management techniques for improving the quality of the production process.
- xxi. Identify the responsibility of human resource management official.
 - xxii. Identify different components of wages and salary.
 - xxiii. Calculate depreciated values of the given machine.
 - xxiv. Calculate break even quantity of in the given production situation (Simple Numerical problems)
 - xxv. Describe various techniques of inventory management.
 - xxvi. Select the relevant material handling system for particular application.
 - xxvii. Identify the ways to control and manage industrial waste.

b. Micro Projects:

- i. Visit a local small industry and conduct a case study on its layout, and industrial functions such asdesign, procurement, production, operation, installation, inspection, maintenance, marketing, etc.
- ii. Identify a specific manufacturing process within a company and analyze its efficiency. Propose changes to streamline the process, reduce waste, and improve overall productivity.
- iii. Visit to nearby industry to identify and compare different work study methods employed to increase productivity and suggest improvements. Choose a small project (e.g., organizing a school event), plan, schedule, and execute the project. Monitor progress and adjust as needed to meet deadlines.
- iv. Select a process (e.g., a food production line or an assembly process). Collect data on costs associated with the process. Analyze and report on the costs involved and suggest cost-saving measures.
- v. Investigate a manufacturing facility or a company's operations Analyze its safety and hygiene.
- vi. Collect 3 videos/animation (Individual task) films explaining concepts of plant layout, plant maintenance, plant safety, quality control etc.
- vii. Prepare list of different material handling equipments in industry.

c. Other Activities:

- 1. Seminar Topics:
 - Role of manager, supervisor and workers.
 - Software for designing layouts
 - Quality, Total quality and three stages of quality
 - Quality control and SQC
 - Principles of economic material handling Hoisting equipment.
 - Types of Industrial disputes.
 - Industrial Acts
 - Industrial Taxes

2. Visits:

- Visit a manufacturing plant and prepare a report on its layout.
- Visit the institute's workshop and prepare a report on its layout.

- Locate 3 small factories/manufacturing plants near your location and prepare a report on plant location.
- Visit a manufacturing/production unit and prepare a report identifying the items of inventory with reference to ABC analysis.
- Visit the HR department of a nearby industry and study salary structures of different level employees and prepare a report on it.
- Visit a manufacturing plant and prepare a report of maximum 3 pages on material handling.
- 3. Self-Learning Topics:
 - social responsibility of a manager
 - Ethics in management
 - Two handed process chart
 - Gantt chart scheduling method
 - Concept of ISO 9001:2008,
 - Indian Factories Act 1948, ISO 9001:2008
 - Industrial Disputes Act 1947.
 - The Workmen's Compensation Act 1923/1956.
 - Qualities of a good leader
 - Objectives and Responsibility of HRMS
 - Importance of plant safety
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	ourse Evalua	tion Matrix			
	Theory Asses	sment (TA)**	Term W	ork Assessm	ent (TWA)	Lab Assessment (LA) [#]		
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term	Term Work & Self Learning Assessment			End Laboratory Assessment	
	Class/Mid		Assignments	Assignments Micro Other		(PLA)	(ELA)	
	Sem Test			Projects	Activities*			
CO-1	20%	20%	20%	20%	20%	-	-	
CO-2	20%	20%	20%	20%	20%	-	-	
CO-3	25%	25%	25%	25%	25%	-	-	
CO-4	15%	15%	15%	15%	15%	-	-	
CO-5	20%	20%	20%	20%	20%	-	-	
Total	30	70	20	20 10 20			-	
Marks				50				

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentages given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises questions related to achievement of each CO.
- N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Diploma in Mechanical Engineering

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (Cl) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Industrial Engineering	10	CO1	15	4	5	6
Unit-2.0 Work and Method Study	10	CO2	14	4	4	6
Unit-3.0 Production Planning and Control	12	CO3	18	5	6	7
Unit-4.0 Industrial Management	06	CO4	09	3	2	4
Unit-5.0 Material Management and Industrial Safety	10	CO5	14	4	4	6
Total	48	-	70	20	21	29

Note: Similar table can also be used to design class/mid-term/ internal question papers for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical): (Not Applicable)

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software: (Not Applicable)

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No. 1.	Industrial Engineering & Management	S.C. Sharma, T R Banga	Khanna Book Publishing Co. (P) Ltd., Delhi, ISBN-13: 978-9355380098, ISBN-10: 9355380097
2.	Industrial Engineering and Management	O.P. Khanna	Dhanpat Rai Publications (P) Ltd.; New Delhi-110002, ISBN-9788189928353
3.	Industrial Safety and Maintenance Management	M. P. Poonia and S. C. Sharma	Khanna Book Publishing Co. (P) Ltd., New Delhi, ISBN-13: 978-9386173182
4.	Management, A global perspective	Heinz Weihrich, Harold Koontz	Revised Edition, 10th Edition, McGraw Hill International Edition 1994. ISBN: 0071137726
5.	Principles and Practices of Management	Premvir Kapoor	Khanna Publishing House, N. Delhi ISBN-9789386173836,9386173832

Diploma in Mechanical Engineering

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
6.	Essentials of Management	Joseph L. Massie	4th Edition, Prentice-Hall of India, New Delhi 2004, ISBN: 8120304861

(b) Online Educational Resources:

- 1) https://archive.nptel.ac.in/courses/112/107/112107143/
- 2) https://archive.nptel.ac.in/courses/112/107/112107292/
- 3) https://onlinecourses.nptel.ac.in/noc22_me04/preview
- 4) https://nptel.ac.in/courses/112107142
- 5) www.vssut.ac.in > lecture-notes > url=mechanical-engineering
- 6) https://www.omicsonline.org > open-access > productivity-improvement-b
- 7) https://www.academia.edu > Productivity_Improvement_by_Work_Study_
- 8) https://www.ijsr.net/archive/v6i2/ART20171266.pdf
- 9) https://nptel.ac.in/courses/112107142/2
- 10) https://nptel.ac.in/courses/112107142/2
- 11) https://nptel.ac.in/courses/112107142/28
- 12) http://fmcet.in/MECH/ME2037_uw.pdf
- 13) https://lecturenotes.in/subject/481/plant-layout-material-handling-plmh
- 14) https://www.scribd.com/document/145194093/Plant-Layout-notes
- 15) http://shodhganga.inflibnet.ac.in/bitstream/10603/33368/6/06_chapter%201.pdf
- 16) https://lecturenotes.in/subject/803/statistical-quality-control-sqc
- 17) http://www.ddegjust.ac.in/2017/Uploads/11/POM-325.pdf
- 18) http://nraomtr.blogspot.com/2013/01/purchasing-and-materials- management.html
- 19) https://nptel.ac.in/courses/112107238/26
- 20) https://easyengineering.net/production-planning-and-control-jayakumar/
- 21) https://nptel.ac.in/courses/112107142/29
- 22) https://www.sciencedirect.com/topics/economics-econometrics-and-finance/project-network-techniques
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational resources before use by the students.

(c) Others:

- 1. Besterfield DH, Total Quality Management, Pearson education, 1999
- 2. Russel, R S, Taylor BW, Operations Management, Pearson education, 2003
- 3. Jocobs, C, A, Production and Operations management, TMH, 1999
- 4. Mitra, A, Fundamentals of Quality control and improvement, John Willey & Sons, 2008

A) **Course Code**

- : 2425502(T2425502/P2425502/S2425502)
- : Industrial Automation & Mechatronics
- **Course Title** Pre- requisite Course(s) C)
- D) Rationale

B)

In the present scenario, highly automated industries are emerging to tackle highly complex and interinterdisciplinary technological designs which involve synergistic integration of many aspects of engineering knowledge base. Industrial automation has become an essential part of every modern industry. Automation helps industry to increase the productivity, quality, accuracy and precision of industrial processes. Stiff competition, higher quality standards and growing concerns of safety & environmental damage have pushed the Industrial sector to adapt state-of-the-art Automation Techniques for effective utilization of resources and optimized performance of the plants. Today engineer is needed to meet the requirements of designing appropriate automation systems. They should have the knowledge of different fields like PLC and PID based Controller, Instrumentation, Networking, Industrial Drives, SCADA/HMI, High speed data acquisition, etc., to become a successful automation engineer. The students passing this course will gain basic understanding about industrial automation and Mechatronics.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/industry.

After completion of the course, the students will be able to-

CO-1. Use relevant principles and strategies for automation for a given situation

:

- CO-2. Identify different mechatronics system and its components
- **CO-3.** Use sensors, actuators and input devices as per given situation.
- **CO-4.** Use control systems as per the given situation
- **CO-5.** Test the given PLC for its functionality

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	2	-	1	-	-	-		
CO-2	3	2	-	1	-	-	-		
CO-3	3	2	1	1	-	-	1		
CO-4	3	2	1	1	-	-	1		
CO-5	3	2	1	1	-	-	1		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Courses		Scheme of Study (Hours/Week)							
Course Code	Course Title	Classroom Instruction (CI)		Lab Notional Instruction Hours (LI) (TW+ SL)		Total Hours (CI+LI+TW+SL)	Total Credits (C)			
		L	Т							
2425502	Industrial Automation & Mechatronics	03	-	04	02	09	06			

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

			Α	ssessment S	cheme (Mai	·ks)			
		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(A+LA)	
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)	
2425502	Industrial Automation & Mechatronics	30	70	20	30	20	30	200	

H) Assessment Scheme:

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

• ETA & ELA are to be carried out at the end of the term/ semester.

• Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project,

seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2425502

Major T	heory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1a.	Distinguish between automated and mechanized system.	Unit-1.0 Introduction to Industrial Automation	CO1
TSO 1b.	Describe Industry 4.0 and its component	1.1 Introduction to Industry 4.0 and its components, Issues and challenges in automation, Advantage &	
TSO 1c.	Select relevant automation strategies for the given manufacturing technique	Disadvantage 1.2 Need of automation in industries, Principles and strategies of automation, factory automation, process	
TSO 1d.	To identify the different components required for production system automation	automation 1.3 Basic elements of an automated system, Structure of Industrial Automation Advanced automation functions,	
TSO 1e.	Analyze the working of industrial processes and products for automation.	Levels of automation Systems- Process and Discrete system	
TSO 1f.	Select criteria for factory automation and processes automation for a given industry	 1.5 Types of automation system: Fixed, Programmable, Flexible Integrated Automation and its application 1.6 Different systems used for Industrial automation: PLC, HMI, SCADA, DCS, Drives. 	
		 1.7 Introduction to Internet of Things (IoT) and Industrial Internet of Things (IIOT) and its application in Automation. 1.8 Role of robots in automation and its components 	
TSO 2a.	To differentiate between mechatronics and automation	Unit-2.0 Introduction to Mechatronics Systems	CO2
TSO 2b.	To identify the different components of a mechatronic system.	2.1 Definition and concepts of Mechatronics, Need and Role of Mechantronics in Design, manufacturing and Factory Automation.	
TSO 2c.	Application of mechatronics in automotive industry.	2.2 Mechatronics Systems, classification and history of mechatronics system, Mechatronics system architecture and components	
		2.3 Basic system models -mechanical system building blocks -translational and rotational system, electrical system building blocks, electro mechanical systems - system components and functions	

Major 1	Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
		 2.4 Introduction to real time mechatronics system-block diagram and functions, real time mechatronics system, Mechatronic Control in Automated Manufacturing, flexible manufacturing systems, Integrated Product Design 2.5 Application of Mechatronics 	
TSO.3a TSO.3b TSO.3c TSO.3d TSO.3e TSO.3f TSO.3g TSO.3h TSO.3i	Describe different types of Sensors giving their applications. Describe different types of actuators giving their applications. Select sensors for a given process with justification. Select relevant actuator for a given work process with justification. Develop hydraulic and pneumatic circuits for the given problem Explain the requirement of the motion conversion system within a system Explain the necessity of analog to digital and digital to analog conversion system. Identify the commonly used input field devices in PLC installations along with their symbols. Draw symbol of various switches used in PLC installations describing the function of each switch. Identify the various digital input devices used in a PLC installation.	 Unit-3.0 Hardware Components- Sensors, Actuators and Input Device Sensors and transducers 3.1 Sensors concept, classification, Development in Transducer technology, General Characteristics of Sensor 3.2 Types: Principle/working, ratings/ specifications, cost, and applications of: - Temperature- Thermistor, Thermocouple and Resistance temperature Detector (RTD), Pressure sensors- Linear Variable Differential Transformer (LVDT), Liquid level sensor -Capacitive and Ultrasonic Force -Strain/Weight sensors Flow sensors – turbine flow sensor Acceleration sensor- Accelerometer Angular and linear position sensor Proximity sensors- Inductive, Capacitive, Optical and ultrasonic Smoke Sensors, IR, Opto- Electronics-Shaft encoders, CD Sensors, Vision System 	CO3
		 Drives and Actuators 3.1 Introduction to actuators, Actuator Concept, Relay as an actuator Classification of actuators 3.2 Mechanical actuators -Translational and rotational motion, kinematic chains, cams, gears, belt and chain drives, bearings 3.3 Hydraulic and Pneumatic actuators- linear and rotary actuators, single and double acting cylinder, directional, process and pressure control valves 3.4 Electrical actuators Electromechanical actuators construction, working and application of Stepper motors, AC/DC Servo motors, BLDC Motor (Very brief) Electrohydraulic actuators- Construction, working and application of Electro-hydrostatic actuator (EHA), ON/OFF Electro-hydraulic Rotary Actuator, Control Valve Rotary Actuator, Solenoid valve Input device 3.5 Analog input devices-Electromagnetic relays, Contactors, Motor starters, 3.6 Manually operated Switches 3.7 Toggle switch, pushbutton switch, knife switch and selector switches 	

Major T	heory Session Outcomes (TSOs)	Units	Relevant COs Number(s
		 3.8 Mechanically operated switches, Limit switch, Temperature switch (Thermostat), Pressure switch, Level switch and their symbols 3.9 Discrete/Digital Input device 	
TSO 4b. TSO 4c. TSO 4d.	Describe various Continuous control system and their feasibility with different process. Select relevant control system for the given situation Describe the basic process control system with the help of a block diagram Explain the types of control available in a process control Describe the different types of controllers in a closed loop system with the help of a block diagram Describe the different types of Industrial control systems.	 Unit-4.0 Industrial Control System 4.1 Block diagram of a basic control system 4.2 Types of control – On-off, Feed forward, Open loop and closed loop control and Transfer function 4.3 Types of Industrial Control Systems- Industrial automation and controls (IACS) Distributed control systems (DCS) Data collection system (DCS) Human machine interface (HMI) Intelligent electronic devices (IED) Programmable automation systems (PAS) Programmable automation controllers (PAC) Programmable logic controllers (PLC) Remote terminal units (RTU) Supervisory control and data acquisition _(SCADA) 4.5 Control Requirements. 4.6 PLC Working Principle with Block Diagram 4.8 Different types of inputs-step and ramp 4.9 Controllers in closed loop control Proportional Controller (P Controller) Integral Controller (D- Controller) P-I Controller PID Controller 	CO4
	Develop PLC programme for the given problem	Unit-5.0 PLC and Communication System 5.1 Introduction to PLC, evolution of PLC, Types of PLC –	CO5
	Develop programme to interface memory, I/Os with processor	 Fixed, Modular and their types 5.2 Building blocks of PLC - CPU, Memory organization, 	
	Identify the characteristics of real time systems Explain the building blocks of the	Input-Output modules (Discrete and Analog) Specialty I/O Modules, Power supply 5.3 PLC programming languages with simple examples:	
	PLC Describe communication system in	 Functional Block Diagram (FBD), Instruction List. 	
TSO 5f.	PLC.	Structured text,Sequential Function Chart (SFC),	
-	series communication	Ladder Programming 5.4 PLC I/O addressing in ladder logic	
130 5g.	Describe the data transfer mechanism for the given communication protocols.	5.5 Simple programming example using ladder logic- Traffic light control, Elevator control, Motor sequencing control, Tank level control, temperature	
TSO 5h.	Describe the given communication protocol used in PLC communication.	control, Conveyor system control Industrial communication System	

Majo	r Theory Sessic	on Outco	omes (1	SOs)	Units	Relevant COs Number(s)
TSO	5i. Summarize communicat	PLC ion proce	to dure	PLC	 5.6 Analog and Digital Communications on Plant Floors 5.7 Industrial Networking 5.8 RS232-422-485 standards for data communication 5.9 Industrial Ethernet, Concept of Fieldbus, MODBUS protocol 5.10 Highway Addressable Remote Transducer (HART)Protocol 	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) and Session Outcomes (LSOs): P2425502

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
<i>LSO 1.1.</i> Identify major automation components in a given system	1.	Identify various building blocks and major automation components in a given robotic system or any other system	CO1
	2.	Analyze given traditional machine in the laboratory and plan the steps and components required to automate it.	CO1
LSO 2.1. Identify and List various component's used in	3.	Identify the components in the given mechatronics systems	CO2
mechatronics system	4.	Identify the communication circuits between each component in the given mechatronics system	CO2
	5.	Replace one or two components in the given mechatronics systems and analyze the output	CO2
LSO 3.1 Design and test pneumatic and hydraulic circuits for	6.	Control the Speed of the Cylinder by Meter-In and Meter-Out Valve Circuit.	CO3
the given situation	7.	Operate Impulse pilot by single acting cylinder.	CO3
	8.	Operate lift and control the speed	CO3
	9.	Open and close the security gate and control the speed.	CO3
	10.	Design a circuit for speed control of hydraulic motor meter out/meter in circuit by using 4/3 DC valve.	CO3
LSO 3.2 Design and Test Electro- Pneumatic and Electro	11.	Operate single and double acting cylinder using single solenoid valve	CO3
Hydraulic circuits	12.	Control the single acting and double acting cylinder using pilot valves.	CO3
	13.	Control the speed of stepper motor and servo motors	CO3
LSO 3.3 Operate stepper motor	14.	Operate stepper motor and control the motor by changing number of steps, the direction of rotation and speed	CO3

Practic	al/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 3.4	Direct acting of hydraulic motor	15.	Operate hydraulic motor	CO3
LSO 3.5	Use digital inductive proximity sensor	16.	Test the response of digital inductive proximity sensor used to detect different types of materials	CO3
LSO 3.6	Use digital capacitive proximity sensor	17.	Test the response of digital capacitive proximity sensors used to detect o different materials	CO3
LSO 3.7	Use digital optical proximity sensor	18.	Test the response of digital optical proximity sensor to detect different materials	CO3
LSO 3.8	Use ultrasonic proximity sensors	19.	Test the response of digital ultrasonic proximity sensors to detect different materials	CO3
LSO 3.9	Use thermistor	20.	measure temperature of a given material using thermistor	CO3
LSO 3.10	Use thermocouple	21.	measure the temperature of a given liquid using Thermocouple and plot the output voltage versus temperature	CO3
LSO 3.11	Use RTD	22.	Control the temperature of an oven using RTD	CO3
LSO 3.12	Use flow sensor	23.	measure the flow of a given liquid or gas with flow sensors	CO3
LSO 3.13	Use pressure sensors	24.	Use pressure sensors to measure the pressure of a liquid or gas	CO3
LSO 3.14	Use load cell	25.	Use load cell for measurement of mechanical force/weight.	CO3
LSO 4.1	Analyze the given system to study open loop, closed loop and feed forward path.	26.	Test the output response of open loop closed loop and feed forward path	CO4
LSO 4.2	Analyze the given first order system and its transfer function and output response	27.	Build and test the output response of a first order system for a step input using a CRO	CO4
LSO 4.3	Analyze the given second order system and its transfer function and output response	28.	Build and test the response of a second order system for a step input using CRO.	CO4
LSO 4.4	Analyze the given water level control system with on-off, Proportional control.	29.	Test the Output response of an on-off and Proportional control-based level control system.	CO4
LSO 4.5	Analyze the given water level control system with P+I+D control.	30.	Test the Output response of a given water level control system with P+I+D based level control system.	CO4
LSO 5.1	Identify the parts of PLC	31.	Identify the various parts and front panel status indicators of the given PLC	CO5
LSO 5.2	Identify analog and digital input and output lines of the PLC	32.	Test the analog and digital input and output lines of the given PLC	CO5
LSO 5.3	Develop PLC prgramme for the given situation	33.	Develop Ladder logic program for different arithmetic operations	CO5

Diploma in Mechanical Engineering

SBTE, Patna

Practio	cal/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
		34.	Develop Ladder logic program for different logical operations	CO5
		35.	Develop and execute PLC programme to control the devices like Lamp, Alarm, motor using push button switches	CO5
LSO 5.4	Establish communication between PLC, PC and	36.	Transfer the control data from PLC to PC and vice versa	CO5
	sensors	37.	Transfer the control data from PLC to PLC	CO5
		38.	Transfer the sensor data from sensor to PLC to PLC and PC	CO5

Note: A suggestive list of practical experiment is given in the above table. More such practical experiment can be added to attain the COs and competency. A judicial mix of minimum 20 or more practical need to be performed, so that the student reaches the 'Precision Level' of Dave's 'Psychomotor Domain Taxonomy' as generally required by the industry.

L) Suggested Term Work and Self Learning: S2425502 Some sample suggested assignments, micro project and other activities are mentioned here for reference.

a. Assignments:

- 1. Prepare a list of companies where automation has been done to boost production rate.
- 2. Visit nearby companies and try to identify the different types of automation there are using within there companies.
- 3. Differentiate between automation and mechanization.
- 4. Visit the nearby Companies and make a list where mechanization and done as well as where automation is done.
- 5. Compare the PLC and PC with regard to:
 - Physical hardware differences
 - Operating environment
 - Method of programming
 - Execution of program
- 6. Suggest the different types of control system and the condition in which they are preferred.

b. Micro Projects:

- 1. Construct a model showing any one types of automation.
- 2. Select one industry and analyze the process and propose the automation strategies' that can be used for automation.
- 3. Develop a working model of a given application using given actuators and valves.
- 4. Identify different types of sensor available in labs in our college and prepare a report.

- 5. Visit nearby industries (minimum 03 industries) and list the various actuating devices with their technical specifications.
- 6. Prepare a model of robotic arm and control it using various sensors.

c. Other Activities:

- 1. Seminar Topics:
 - Comparison between Mechanization, Mechatronics & Automation.
 - Select an automation system which is best suited for automotive industry and justify your selection.
 - Different types of velocity sensor and there working.
- 2. Visits:
 - Visit a nearby industry to identify the various types of automation system they are using and prepare the detail report design of automation system, sensors and actuators used, type of work, etc
 - Visit a robotic service center and identify the different types of sensor used within it.
- 3. Self-Learning Topics:
 - Level of Automation
 - Control Requirements
 - Graphical Display
 - Pneumatics & Hydraulic
 - Rotary-to-Linear Motion Conversion.

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	ourse Evalua	ation Matrix			
	Theory Assess	sment (TA)**	Term W	ork Assessm	nent (TWA)	Lab Assessment (LA) [#]		
	Progressive Theory Assessment	End Theory Assessment (ETA)	Term V	Vork & Self Learning Assessmer	nt	Progressive Lab	End Laboratory	
COs	(PTA) Class/Mid Sem Test		Assignments	Micro Projects	Other Activities*	Assessment (PLA)	Assessment (ELA)	
CO-1	15%	15%	15%		15%	10%	10%	
CO-2	15%	15%	15%	-	15%	10%	10%	
CO-3	25%	25%	25%	35%	25%	30%	35%	
CO-4	20%	20%	20%	35%	20%	25%	25%	
CO-5	25%	25%	25%	30%	25%	25%	25%	
Total	30	70 20		20	10	20	30	
Marks				50				

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

The percentage given are approximate

• In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total	ETA (Marks)			
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember Understanding (R) (U)		Application & above (A)	
Unit-1.0 Introduction to Industrial Automation	8	CO1	12	4	4	4	
Unit-2.0 Introduction to Mechatronics systems	8	CO2	12	4	4	4	
Unit-3.0 Hardware Components- Sensors, Actuators and input device	12	CO3	17	5	5	7	
Unit-4.0 Industrial Control System	10	CO4	14	4	4	6	
Unit-5.0 PLC and communication system	10	CO5	15	3	4	8	
Total	48	-	70	20	21	29	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Delevent		PLA/ELA		
S. No	Laboratory Practical Titles	Laboratory Practical Titles COs Performance		Viva-		
3. NO		Number(s)	PRA*	PDA**	Voce	
			(%)	(%)	(%)	
1.	Identify various building blocks and major automation components in a given robotic system or any other system	CO1	40	50	10	
2.	Analyze given traditional machine in the laboratory and plan the steps and components required to automate it.	CO1	40	50	10	
3.	Identify the components in the given mechatronics systems	CO2	40	50	10	
4.	Identify the communication circuits between each component in the given mechatronics system	CO2	40	50	10	
5.	Replace one or two components in the given mechatronics systems and analyze the output	CO2	40	50	10	
6.	Control the Speed of the Cylinder by Meter-In and Meter-Out Valve Circuit.	CO3	40	50	10	
7.	Operate Impulse pilot by single acting cylinder.	CO3	40	50	10	

Diploma in Mechanical Engineering

		Deleverat		PLA/ELA	
C N	taka sata sa Dasati si Tita	Relevant	Perfor	Viva-	
S. No	Laboratory Practical Titles	COs	DRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
8.	Operate lift and control the speed	CO3	40	50	10
9.	Open and close the security gate and control the speed.	CO3	40	50	10
10.	Design a circuit for speed control of hydraulic motor meter out/meter in circuit by using 4/3 DC valve.	CO3	40	50	10
11.	Operate single and double acting cylinder using single solenoid valve	CO3	40	50	10
12.	Control the single acting and double acting cylinder using pilot valves.	CO3	40	50	10
13.	Control the speed of stepper motor and servo motors	CO3	40	50	10
14.	Operate stepper motor and control the motor by changing number of steps, the direction of rotation and speed	40	50	10	
15.	Operate hydraulic motor	CO3	40	50	10
16.	Test the response of digital inductive proximity sensor used to detect different types of materials	40	50	10	
17.	Test the response of digital capacitive proximity sensors used to detect o CO3 different materials				10
18.	Test the response of digital optical proximity sensor to detect different CC materials CC		40	50	10
19.	Test the response of digital ultrasonic proximity sensors to detect different materials	CO3	40	50	10
20.	measure temperature of a given material using thermistor	CO3	40	50	10
21.	measure the temperature of a given liquid using Thermocouple and plot the output voltage versus temperature	CO3	40	50	10
22.	Control the temperature of an oven using RTD	CO3	40	50	10
23.	measure the flow of a given liquid or gas with flow sensors	CO3	40	50	10
24.	Use pressure sensors to measure the pressure of a liquid or gas	CO3	40	50	10
25.	Use load cell for measurement of mechanical force/weight.	CO3	40	50	10
26.	Test the output response of open loop closed loop and feed forward path	CO4	40	50	10
27.	Build and test the output response of a first order system for a step input using a CRO	CO4	40	50	10
28.	Build and test the response of a second order system for a step input using CRO.	CO4	40	50	10
29.	Test the Output response of an on-off and Proportional control-based level control system.	CO4	40	50	10

Diploma in Mechanical Engineering

		Relevant		PLA/ELA		
S. No	Laboratory Practical Titles	Performance				
5.110		Number(s)	PRA*	PDA**	Voce (%)	
		.,	(%)	(%)	(70)	
30.	Test the Output response of a given water level control system with P+I+D based level control system.	CO4	40	50	10	
31.	Identify the various parts and front panel status indicators of the given PLC	CO5	40	50	10	
32.	Test the analog and digital input and output lines of the given PLC	CO5	40	50	10	
33.	Develop Ladder logic program for different arithmetic operations	CO5	40	50	10	
34.	Develop Ladder logic program for different logical operations	CO5	40	50	10	
35.	Develop and execute PLC programme to control the devices like Lamp, Alarm, motor using push button switches	CO5	40	50	10	
36.	Transfer the control data from PLC to PC and vice versa	CO5	40	50	10	
37.	Transfer the control data from PLC to PLC	CO5	40	50	10	
38.	Transfer the sensor data from sensor to PLC to PLC and PC	CO5	40	50	10	

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Universal PLC Training System with HMI (Of reputed make such as Allen bradely, Siemens, etc.,) Compatible with SCADA software	Human Machine Interface (HMI) display,PLC with 16 digital inputs, 16 digital outputs with RS232 communication facility. Open platform to explore wide PLC and HMI applications. Industrial look & feel. Toggle switches, push to ON switch, proximity sensor, visual indicator, audio indicator, and DC motor. Experiments configurable through patch board. Powerful instruction sets. Several sample ladder and HMI programs. PC based ladder and HMI programming. Extremely	31-35

S.	Name of Equipment,	Broad	Relevant
No.	Tools and Software	Specifications	Experiment/Practical
			Number
		easy and student friendly software to develop different	
		programs. Easy downloading of programs. Practice	
		troubleshooting skills. Compact tabletop ergonomic design.	
		Robust construction. PLC gateway for cloud connectivity.	
		Open source software like Ladder logic simulator, Pico soft	
		Simulator, Logixpro simulator, Simple EDA tools can also be	
		used	
2.	Proximity sensors kit	The kit should comprise of the following proximity sensor -	16-19
		Inductive Proximity Sensor, Capacitive Proximity Sensor,	
		Magnetic Sensor, Optical Sensor, Audio and LED indicator for	
		the object detection. Along with learning material	
3.	Temperature transducer	Temperature Transducers Test Bench includes different types	22
	kit	of temperature sensors including bimetallic strip, RTD,	
		thermocouple, thermistor, RTD/thermocouple temperature	
		display and thermistor, temperature display, heater, fan,	
		switches and its indicator. Separate heater and fan chamber	
		with stand.	
		On panel digital voltmeter, digital ammeter,	
		RTD/thermocouple temperature display, NTC temperature	
		display, toggle switch for heater and fan with indicator, experiments configurable through patch board, heavy duty	
		Test bench, castor wheel (with locking mechanism) is provided	
		at legs of Test bench so that it can be easily moved, enhanced	
		electrical safety consideration.	
4.	Pressure transducer kit	Pressure transducer kit should include different types of	24
		pressure sensors including capacitive pressure transducer, load	
		cell, bourdon tube pressure gauge, and pressure vessel.	
		Pressure vessel with pressure gauge, safety valve, non	
		returning valve bourdon gauge and capacitive transducer and	
		air compressor, on panel digital voltmeter, digital ammeter, 4-	
		20ma display, 0-10V DC display, toggle switch for compressor,	
		load cell with suitable weight, experiments configurable	
		through patch board, self -contained, bench-mounting	
		arrangement, castor wheel (with locking mechanism) is	
		provided at legs of Test bench so that it can be easily moved,	
		enhanced electrical safety consideration. Detailed experiment	
		manual should be supplied with the kit.	
5.	Flow sensor kit	Turbine flow sensor kit	23
6	The use is the u		20
6.	Thermistor	• Interchangeability Tolerance (Accuracy): Standard Sensor: ±	20
		0.2°C (0 to 70°C) High Accuracy [XP] Sensor: ±0.1°C (0 to	
		70°C)	
		 Dissipation Constant: 2.7 mW/°C. Stability (drift): Loss than 0.00°C (upor 	
		• Stability(drift): Less than 0.02°C / year.	
		Thermal Time Constant: 5 seconds (bead in still air) .5 seconds (stirred liquid) Sensor Type	
		seconds (stirred liquid) Sensor Type.	
		 Dielectric withstanding voltage: AC 50V for one second. Insulation registrance: Above 200 MO at DC 100V 	
7	Thormocounto	 Insulation resistance: Above 200 MΩ at DC 100V. 	21
7.	Thermocouple	T,J,E,K,N,R,S B,C types of thermocouple	21
8.	Strain Gauge kit	The kit should provide study of Strain Gauge and their	25
	Ŭ Ŭ	application for measurement of Strain. It should help to study	
		bridge configuration of Strain Gauge and the signal conditioning	

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical
			Number
		 circuits required to measure strain. It should use cantilever beam arrangement to produce strain on Strain Gauge. The Strain Gauges are firmly cemented to the cantilever at the point where the strain is to be measured. Weights are placed on free end of cantilever. Strain developed changes the resistance of Strain Gauge which is detected by full bridge configuration. It should comprise of Seven-segment LED display showing strain in micro strain units. Different weights should be provided to perform linearity and sensitivity experiments. Detailed experiment manual should be supplied with the kit. Test-points to observe input output of each block, onboard gain and offset null adjustment, built in DC Power Supplies, 3½ digits LED display, onboard Cantilever arrangement, high repeatability and reliability The kit should be capable of performing following experiments: Measuring strain using strain gauges and cantilever assembly. Determination of linear range of operation of strain 	
		measurement.Determination sensitivity of the kit	
9.	Stepper motor control trainer	Stepper motor control trainer	14
10.	Hydraulic motor trainer	Hydraulic motor trainer	15
11.	Cut sections of pumps, actuators, valves and accessories used in hydraulic systems	Suitably cut and mounted on a sturdy base to show the internal details.	14,15
12.	Working models of pumps, actuators, valves and accessories used in hydraulic systems	Working models mounted on sturdy base to demonstrate the operation.	14,15
13.	Working models of pumps, actuators, valves and accessories used in pneumatic systems	Working models mounted on sturdy base to demonstrate the operation.	14,15
14.	Oil Hydraulic trainer	 Mounted on sturdy base fitted with all standard units and accessories to create various hydraulic circuits. Hydraulic trainer with simulation software Pneumatic trainer with simulation software Filter Regulator Combination with Lubricator (FRL Unit) with pressure gauge , Junction Box with slide valve, Push Button Valve , 3/2 NC Roller lever valve ,3/2 NC Roller lever valve ,3/2 NC Roller lever valve ,5/2 Double external pilot operated valve, 5/2 External pilot operated valve with spring return , 5/2 Hand lever with spring return, 5/2 Hand lever with spring return, 5/2 Hand lever with detent – for maintained pilot operation of a SAC , 5/2 Valve with Lever head, 5/2 Value with Mushroom head , Flow control valve – Metering IN & OUT , Shuttle Valve (OR valve) , Quick Exhaust Valve with Quick coupler plug Double Acting Cylinder (DAC) with Quick coupler socket (with accessories: Screw driver – for cushioning 	

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practica Number	
		 adjustment), Single Acting Cylinder (SAC), Swivel fitting assembly with Quick coupler plug, Multi distributor fittings (for cascading circuit designing) Single Solenoid Valve with Spring Return (with LED), Double Solenoid Valve (with LED), Magnetic Reed Switch, Magnetic Reed Switch, Relay Logic Unit – 2C/0-3 relays, Electrical Push Button Unit, Electrical Selector Switch Unit, Timer 		
15. Pneumatic Trainer		 Mounted on sturdy base fitted with all standard units and accessories to create various Pneumatic circuits. Pneumatic trainer with simulation software Filter Regulator Combination with Lubricator (FRL Unit) with pressure gauge, Junction Box with slide valve Push Button Valve, 3/2 NC Roller lever valve, 3/2 NC Roller lever valve, 5/2 Double external pilot operated valve (Memory valve) 5/2 External pilot operated valve with spring return, 5/2 Hand lever with spring return, 5/2 Hand lever valve with detent, 5/2 Valve with Lever head ,5/2 Value with Mushroom head, Flow control valve, Shuttle Valve (OR valve), AND valve Quick Exhaust Valve with Quick coupler plug, Double Acting Cylinder (DAC) with Quick coupler socket, Single Acting Cylinder (SAC), Swivel fitting assembly with Quick coupler plug Aluminum Profile Table Top, Profile Table Top, Miniature Double Acting Cylinder (DAC), Single Solenoid Valve with Spring Return, Double Solenoid Valve (with LED) Magnetic Reed Switch, Relay Logic Unit – 2C/0-3 relays, Electrical Push Button Unit, Electrical Selector Switch Unit (Black Selector – 1 no, Green Push Button – 1 no), Timer, Simulation software 	6-10	
16.	Hydraulic trainer	Hydraulic Trainer	6-10	
17.	Advanced Electro - Hydraulic and Electro - Pneumatic Hardware systems with work stations and simulation software	 Electro - Hydraulic and Electro - Pneumatic Hardware systems with PLC and simulation software Profile plate, Frame with Castor Wheels, Filter, Lubricator, Regulator with pressure gauge, Hand Slide Valve, Connection component set, Plastic Tubing, Power Supply & cables, Pressure Gauge, 3/2 Way double solenoid valve 	11,12,13	
18.	Output devices	Servomotor, DC motor, AC motor, stepper motor, Conveyer Belt control by PLC, water level control etc.	7-25	
19.	Thermal actuators	Hot-And-Cold-Arm Actuators, Chevron-Type Actuators	-	
20.	Magnetic actuators	Moving Coil Controllable Actuators, Moving Iron Controllable Actuator	-	
21.	Open and closed loop control system kit	Open and closed loop system kit should be able to measure the output response using CRO	26	
22.	First and second order control system	First and second order system with input and output terminals provision	27-28	

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practica Number	
23.	Process control system with feed forward path kit	Process control system with feed forward path kit with input and output terminals provision	26	
24.	PID Controller Test Bench	PID Controller Test Bench is a complete setup to control process through two-point (on/off) and three-point (PID) controllers. Industrial PID controller with RS485 communication facility, Thermocouple temperature sensor, Float switch for detection of water level, Temperature measurement and control, User friendly software, USB Interface, Heavy duty Test bench, Electrical control panel, Leak proof sturdy piping and tanks, SS Sump tank for inlet and outlet of water, Enhanced electrical safety considerations, Caster wheel (with locking mechanism) at the legs of Testbench for easy movement.	26-30	
25.	CRO	 150 MHz, 100 MHz, 70 MHz, 50 MHz bandwidth models Real-time sampling rate up to 1 GSa/s, Equivalent-time sampling rate up to 50 GSa/s Memory Depth up to 2 Mpts Trigger types: Edge, Pulse, Video, Slope, Alternate Waveform math functions:+, -, *, / FFT 6 digital frequency counter Supports Multi-language display and embedded online help Screensaver from 1 minute to 5 hours Digital filter and waveform recorder function Shortcut storage function key 7 inch TFT-LCD display with 800 * 480 resolution Multiple interfaces: USB Host, USB Device (USBTMC), LAN (VXI11), Pass / Fail 	27-28	
26.	RS485 I/O Module	EDAM-8060D (4-ch isolated digital input and 4-ch relay output module with LED) EDAM-8060D (4-ch isolated digital input and 4-ch relay output module with LED) •Automatic data flow control on RS-485 •Baute rate: up to 115.2K(bps) •Programmable host watch dog timer for host failure protection •4-ch isolated digital input with common source and 4-ch relay output •Support EDAM ASCII format protocol(default) •Fully photo-isolation 3750Vrms	36-38	
27.	Ethernet I/O Module	 Ethernet 10/100 Based-T communication Support protocol Modbus/TCP, TCP/IP,UDP,ICMP,ARP Support dry/wet contact input Support counter/frequency input Support isolated input/output channels Provides pulsed/delay output mode Provides source type digital output Built-in TVS/ESD protection Fully photo-isolation 3750Vrms 	36-38	

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Mechatronic Systems Design and Solid Materials: Methods and Practices	Satya Bir Singh, Prabhat Ranjan, et	Apple Academic Press; 1st Ed. 2023 ISBN-10 : 1774637723 ISBN-13 : 978-1774637722
2.	Mechatronics (Electronic Control Systems in Mechanical and Electrical Engineering)	William Bolton	Pearson Education, 7 th Ed. 2023 ISBN-10 : 9357052844 ISBN-13 : 978-9357052849
3.	Control of Mechatronic Systems: Model- Driven Design and Implementation Guidelines	Patrick O. J. Kaltjob	Wiley; 1st Ed. 2020 ISBN-10 : 1119505801 ISBN-13 : 978-1119505808
4.	Industrial Automation Technologies	Chanchal Dey Sunit Kumar Sen	CRC Press; 1st edition, 2020 ISBN-13 : 978-0367260422
5.	Introduction to Industrial Automation	Stamatios Manesis George Nikolakopoulos	CRC Press; 1st edition, 2020 ISBN-13 : 978-0367571832
6.	An introduction to the industrial automation and robotics	PIZARRO D.	AURIS PUBLISHING; New edition ,2017 ISBN-13 : 978-1781545003
7.	Programmable Logic Controllers and Industrial Automation - An introduction,	Mitra, Madhuchandra; Sengupta, Samarjit,	Penram International Publication, 2015, ISBN: 9788187972174

(b) Online Educational Resources:

- 1) https://www.youtube.com/watch?v=oxMdDsud5vg
- 2) https://archive.nptel.ac.in/courses/108/105/108105088/
- 3) https://archive.nptel.ac.in/courses/112/107/112107298/
- 4) https://mrcet.com/downloads/digital_notes/ME/IV%20year/Automation%20in%20Manufa cturing.pdf
- 5) https://mrcet.com/downloads/digital_notes/ME/IV%20year/Automation%20in%20Manufa cturing.pdf
- 6) Software: www.fossee.com
- 7) Software: www.logixpro.com

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Lab Manuals
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Learning Packages

Diplo	ma in Mechanical Engineering	Semester -V	SBTE, Bihar	
A)	Course Code	: 2425503(T2425503/P2425503/S2425503)		
B)	Course Title	: Hybrid Automobile Engineering		
C)	Pre- requisite Course(s)	: IC Engine		
D)	Rationale	:		

D) Rationale

Automobile sector helping the overall for overall development and it create the wages and selfemployment opportunity. A mechanical engineering technologist should have better understanding of various aspect of Automobile system. This course is designed to provide basic understanding about the different vehicle layout, chassis, transmission and control, vehicle safety, suspension system and hybrid electrical vehicle.

The aim of this course is to help the student in co-relating the various automobile system and its function with good practical and theoretical knowledge for technological advancement in automobile industry.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Analyze the need of hybrid vehicle.
- **CO-2** Analyze power management systems for electric and hybrid vehicles
- **CO-3** Analyze the architecture design and vehicle control unit of electric and hybrid vehicles
- CO-4 Investigate the issues related to grid interconnections and charging stations of electric and hybrid vehicle
- **CO-5** Select energy storage device as per the given application

F) Suggested Course Articulation Matrix (CAM):

Course				Programr Outcomes(Outco	ne Specific omes* Os)
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2
CO-1	3	-	-	2	1	-	-	-	-
CO-2	2	3	1	2	2	-	-	-	-
CO-3	3	3	1	1	2	-	1	-	-
CO-4	3	3	-	2	-	1	1	-	-
CO-5	3	3	2	3	3	1	2	-	-

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Cauraa	Course Title	Scheme of Study (Hours/Week)						
Course Code		Classroom Instruction (CI)		Lab Notional Instruction Hours (LI) (TW+ SL)		Total Hours (CI+LI+TW+SL)	Total Credits (C)	
		L	Т					
2425503	Hybrid Automobile Engineering	03	-	04	02	09	06	

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

		Assessment Scheme (Marks)						
Course Code	Course Title	Theory Assessment (TA)		Term Work & Self-Learning Assessment		Lab Assessment (LA)		A+LA)
				(TWA)				
		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
2425503	Hybrid Automobile Engineering	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)
 PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2425503

Maj	or Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1b. TSO 1c. TSO 1d.	Differentiate between hybrid vehicle and conventional vehicle based on the given criteria Analyze the drive train vehicle motion Asses the economic and environment impact of hybrid vehicles Describe the procedure for disposal of battery, cells and hazardous materials Describe basic operating principals of Hybrid Electric Vehicles and their impact on the energy conversion process	 Unit-1.0 Introduction to Hybrid Vehicle & Electric Vehicle 1.1 A brief history of Electric and Hybrid vehicles 1.2 Basic architecture of hybrid drive train and analysis of series drive train vehicle motion and the dynamic equations for the vehicle 1.3 Types of Electric vehicle and hybrid vehicle, advantages over conventional vehicles 1.4 limitations of Electric vehicle and hybrid vehicle 1.5 Economic and environmental impact of Electric vehicle and hybrid vehicle 1.6 Disposal of battery, cell and hazardous material and their impact on environment. 1.7 Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, and mathematical models to describe vehicle performance. 	CO1
TSO 2a.	Describe the procedure of sizing the given motor	Unit-2.0 DC and AC Machines & Drives in EV & HV	CO2
TSO 2b.	Select relevant motor as pert the requirement	2.1 Types of Motors, selection and sizing of Motor	
TSO 2c.	Calculate RPM and Torque of the given motor	2.2 RPM and Torque calculation of motor2.3 Motor Controllers and Component sizing,	
TSO 2d.	Draw mechanical and electrical connection/wiring of the given motor	Physical locations 2.4 Mechanical and electrical connection of motor	
	Determine the performance characteristics of the given motor Identify the components of the given	 2.5 Induction motor drives and control characteristics 2.6 Permanent magnet motor drives and characteristics 2.7 Brushed & Brushless DC motor drive and characteristics 2.8 Switched reluctance motors and Characteristics 2.9 IPM motor drives and characteristics Unit-3.0 Hybrid Vehicle Architecture Design and 	CO3
130 30.	hybrid vehicle	Control unit	03

Maj	or Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 3c. TSO 3d. TSO 3e. TSO 3f.	Describe the system requirement and electrical protection for the given hybrid vehicle Explain the architecture and working of the given hybrid vehicle Compare fuel vs Electric and solar power Describe control unit development process and data management system Compare performance of EV and IC engine vehicles Draw layouts and Identify nomenclature of auto electrical systems, chassis and Monocoque body, Steering Systems, Suspension system, Brakes, wheels & tyres.	 3.1 Types of Electric Vehicle and components 3.2 Electrical protection and system requirement 3.3 Photovoltaic solar based EV design 3.4 Battery Electric vehicle (BEV) 3.5 Hybrid electric vehicle (HEV) 3.6 Plug-in hybrid vehicle (PHEV) 3.7 Fuel cell electric vehicle (FCEV) 3.8 Electrification Level of EV 3.9 Comparison of fuel vs Electric and solar powers 3.10 Solar Power operated Electric vehicles 3.11 Control unit -Function of CU, Development Process, Software, Hardware, Data Management 	nt
TSO.4a	Explain Grid to vehicle and vehicle to grid	Unit-4.0 Grid Interconnection and Charging Stat	ion CO4
TSO.4b TSO.4c TSO.4d TSO.4e TSO.4f	charging. Describe vehicle to vehicle and vehicle to personal communication systems for the given vehicle. Describe the procedure for installation and commissioning of battery charging station Estimate station capacity Explain the technical issues associated with given charging station Apply BEE standards for EV and HV.	 4.1 Introduction to smart charging: Grid to vehicle and vehicle to grid 4.2 Smart metering and ancillary services, vehicle to vehicle and vehicle to personal communication systems 4.3 Introduction to battery charging stations an its installation and commissioning, 4.4 Type of charging station, components of charging station 4.5 Selection and Sizing of charging station 4.6 Estimation on station capacity and associated technical issues, 4.7 Different connectors, policy regulations and standards for EV and HV, BEE standards, Indian and Global scenario, case studies 	d
	Apply power and energy management strategies for the given situation Select relevant energy storage device and	Unit-5.0 Energy Storage and Battery Managem System (BMS)	ent CO5
TSO 5c. TSO 5d.	technology as per the requirement Prepare battery layout design develop battery pack configuration and construction apply Rule based control and optimization- based control battery management system Energy conversion processes and energy flow through a hybrid electric vehicle	 5.1 Power and Energy management strategies a its general architecture of EV and HV 5.2 Cell Types (Lead Acid/Li/NiMH) 5.3 Battery charging and discharging calculation 5.4 Cell Selection and sizing, Battery lay outing design 5.5 Battery Pack configuration and construction 5.6 Need of BMS, Rule based control and optimization-based control 5.7 Software-based high-level supervisory contro 5.8 Mode of power, behaviour of motor, advance Features 5.9 Hybridization of various energy storage devices, Selection of the energy storage 	ol

Note: One major TSO may require more than one Theory session/Period.

Relevant S. Practical/Lab Session Outcomes (LSOs) Laboratory Experiment/Practical Titles COs No Number(s) CO1 LSO 1.1. Identify Electric vehicle components and 1. Identify and interpret different types of vehicles and their specifications. Performance comparison of EV and IC engine vehicles. 2. Identify and become familiar with the CO1 components EV and how they are in comparison to IC engine-based vehicle 3. Identify various gauges/instrument on CO1 dashboard of an electric vehicle and identify differences in instrumentation panel with IC engine vehicle 4. Calculate motor effort CO1 Test amplifier, output torque, and 5. CO1 efficiency at different condition Determine performance of electric vehicles, CO1 6. in comparison to IC engine vehicles 7. Determine fuel economy CO1 LSO 2.1. Use induction motor test rig 8. Determine the control characteristics of CO2 Induction motor used for electric motor vehicle Determine speed control characteristics of CO2 9. Induction motor used for electric vehicle LSO 2.2. Use BLDC motor test rig 10. Determine the control characteristics of CO2 BLDC motor used for electric motor vehicle 11. Determine speed control characteristics of CO2 BLDC motor used for electric motor vehicle 12. Determine the control characteristics of CO2 LSO 2.3. Use Switch Reluctance motor test rig Switch Reluctance motor used for electric motor vehicle Determine the control characteristics of CO2 LSO 2.4. Use IPMSM motor test rig 13. IPMSM motor used for electric motor vehicle 14. Determine torque control characteristics of CO2 IPMSM motor used for electric motor vehicle Determine field control of IPMSM motor CO2 15. used for electric vehicle LSO 2.5. Identify electrical and mechanical wiring 16. Identify electrical wiring in the given hybrid CO2 in the given vehicle vehicle 17. Identify mechanical wiring in the given CO2 hybrid vehicle. LSO 2.6. Wiring of head light, trafficators, and 18. check the wiring of head light, trafficators, CO2 electric horn electric horn and replacing if not wired properly LSO 3.1. Identify transmission and driveline 19. Identify main systems and sub systems of CO3 systems in a given HV vehicle Automobile (transmission and driveline systems). LSO 3.2. Test all Electrical, Electronic components 20. Trace and Test all Electrical, Electronic CO3 & circuits and assemble circuit and high components & circuits and assemble circuit voltage wiring to ensure functionality of system.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2425503

Practical/Lab Session Outcomes (LSOs)	S. No	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
	21.	Trace the high voltage wiring on the vehicle.	CO3
LSO 3.3. Carryout the diagnostic procedure for troubleshooting	22.	electrical accessories: - No horn, poor horn, continuous hornWiper and washer no operation, continuous operation, intermittent operation Power window no operation Power Door lock no operation Immobilizer system and keyless entry no operationTrouble (Error indication) in Automatic seat belt system. – Trouble (Error indication) in Air bag system.	CO3
LSO 3.4. Determine efficiency & output of an engine and electric machine	23.	Characterize the efficiency & output of an engine and electric machine	CO3
LSO 3.5. Determine the effects of aerodynamics & rolling resistance	24.	Determine the effects of aerodynamics & rolling resistance through vehicle coast-down testing	CO3
LSO 3.6. Test the sensors	25.	Test the various sensors fitted on the vehicle.	CO3
LSO 4.1. Establish communication between vehicle to vehicle and vehicle to personal communication systems	26.	Send & receive messages on a CAN bus	CO4
LSO 4.2. Use simulation software	27.	Perform vehicle simulation	CO4
LSO 5.1. Identify the major components of EV and HV	28.	Identify the components for required for installing battery charging station. Install battery charging station	CO5
LSO 5.2. Test batteries & perform battery maintenance	29.	Conduct specific gravity test and open voltage test of the given battery used in automobile and find the state of charge.	CO5
	30.	Characterize the performance of a battery pac	CO5
	31.	Develop battery pack components	CO5
	32.	Monitor and check performance of high voltage rechargeable energy storage system and Battery Management System.	CO5
	33.	Identify different cell chemistries and geometries	CO5
	34.	Identify various sensors installed - Battery Temperature Mapping.	CO5
	35.	Perform Verification of cell performance against supplier data sheet	CO5
	36.	Perform Interfacing of BMS with Battery Pack configuration of BMS with software application.	CO5
	37.	Measure voltage, current and temperature with BMS.	CO5
	38.	Perform battery testing, charging and cycling operations	CO5

Note: A suggestive list of practical experiment is given in the above table. More such practical experiment can be added to attain the COs and competency. A judicial mix of minimum 20 or more practical need to be performed, so that the student reaches the 'Precision Level' of Dave's 'Psychomotor Domain Taxonomy' as generally required by the industry.

L) Suggested Term Work and Self Learning: S2425503 Some sample suggested assignments, micro project and other activities are mentioned here for reference.

a. Assignments:

- i. Draw the neat sketch of opening and closing of I.C. engine valve through CAM mechanism.
- ii. Write and explain the different component of automobile cooling system.
- iii. Explain the working of carburetor/MPFI/fuel injectors.
- iv. Draw the circuit diagram of starting system of an automobile.
- v. Explain the different types of suspension system of an automobile.
- vi. Explain the power flow control in hybrid drive train topologies.

b. Micro Projects:

- i. Prepare a report on hydrogen vehicle.
- ii. Prepare a report on hybrid and electrical vehicle.
- iii. Prepare simple automobile lightening circuit for 2/4-wheeler.
- iv. Prepare a chart on road traffic signal and display in laboratory for awareness.
- v. Information search and Market survey through internet, magazine for-i) Upcoming vehicle on alternate fuel ii) Automobile market in India

c. Other Activities:

- 1. Seminar topics-
 - Different component of automobile ignition system and its use in electric vehicle.
 - Compare between different steering angle and their effect.
 - Latest suspension system and braking system used in automobile and its need.
 - Concept of hybrid electric vehicle and its social and environment importance.

2. Visit-

- Visit 2/3/4 wheeler/BSRTC depot/ automobile manufacturers, observe the different sections, work profile of diploma engineer, safety precautions to be followed and prepare a detailed report with schematic layout.
- Visit BSRTC depot and observe the different sections, work profile of diploma engineer, safety precautions to be followed and prepare a detailed report with schematic layout.
- Try to attend Indian auto expo/expert talk of RTO officials in your city/town and prepare a detailed report and share the experience with colleagues.
- 3. Self-Learning Topics-
 - Prepare journals based on practical perform in laboratory.
 - Prepare power point presentation or animation for understanding constructional details and working of hybrid electric vehicle.
 - Observe the cut section of automobile engine components and identify different parts.

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix								
	Theory Asses	sment (TA)**	Term Work Assessment (TWA)			Lab Assessment (LA) [#]			
COs	Progressive Theory End Theory Assessment Term Work & Self Learning Assessment Assessment (ETA) COs (PTA)		Progressive Lab Assessment	End Laboratory Assessment					
203	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)		
	Sem Test			Projects	Activities*				
CO-1	15%	15%	15%	-	-	-	-		
CO-2	25%	25%	25%	25%	25%	25%	25%		
CO-3	15%	15%	15%	25%	25%	25%	25%		
CO-4	25%	25%	25%	25%	25%	25%	25%		
CO-5	20%	20%	20%	25%	25%	25%	25%		
Total	30	70	20	20	10	20	30		
Marks				50		1			

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

• The percentage given are approximate

• In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Introduction to Hybrid Vehicle & Electric Vehicle	8	CO1	12	3	4	5
Unit-2.0 DC and AC Machines & Drives in EV & HV	12	CO2	17	5	5	7
Unit-3.0 Hybrid Vehicle Architecture Design and Control Unit	12	CO3	17	5	5	7
Unit-4.0 Grid interconnection and Charging Station	8	CO4	12	3	4	5
Unit-5.0 Energy Storage and Battery Management System (BMS)	8	CO5	12	4	3	5
Total	48	-	70	20	21	29

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical)

		Polovant	PLA/ELA			
S.	Laboratory Practical Titles	Relevant COs	Perfor	mance	Viva-	
No.		Number(s)	PRA*	PDA**	Voce	
		Number(S)	(%)	(%)	(%)	
1.	Identify and interpret different types of vehicles and their specifications.	CO1	40	50	10	
2.	Identify and become familiar with the components EV and how they are in comparison to IC engine-based vehicle	CO1	40	50	10	
3.	Identify various gauges/instrument on dashboard of an electric vehicle and identify differences in instrumentation panel with IC engine vehicle	C01	40	50	10	
4.	Calculate motor effort	CO1	40	50	10	
5.	Test amplifier, output torque, and efficiency at different condition	CO1	40	50	10	
6.	Determine performance of electric vehicles, in comparison to IC engine vehicles	CO1	40	50	10	
7.	Determine fuel economy	CO1	40	50	10	
8.	Determine the control characteristics of Induction motor used for electric motor vehicle	CO2	40	50	10	
9.	Determine speed control characteristics of Induction motor used for electric vehicle	CO2	40	50	10	
10.	Determine the control characteristics of BLDC motor used for electric motor vehicle	CO2	40	50	10	
11.	Determine speed control characteristics of BLDC motor used for electric motor vehicle	CO2	40	50	10	
12.	Determine the control characteristics of Switch Reluctance motor used for electric motor vehicle	CO2	40	50	10	
13.	Determine the control characteristics of IPMSM motor used for electric motor vehicle	CO2	40	50	10	
14.	Determine torque control characteristics of IPMSM motor used for electric motor vehicle	CO2	40	50	10	
	Determine field control of IPMSM motor used for electric vehicle	CO2	40	50	10	
15.	Identify electrical wiring in the given hybrid vehicle	CO2	40	50	10	
16.	Identify mechanical wiring in the given hybrid vehicle.	CO2	40	50	10	
17.	check the wiring of head light, trafficators, electric horn and replacing if not wired properly	CO2	40	50	10	
18.	Identify main systems and sub systems of Automobile (transmission and driveline systems).	CO3	40	50	10	
19.	Trace and Test all Electrical, Electronic components & circuits and assemble circuit to ensure functionality of system.		40	50	10	
20.	Trace the high voltage wiring on the vehicle.	CO3	40	50	10	
21.	Diagnose the following troubles in the electrical accessories: - No horn, poor horn, continuous hornWiper and washer no operation, continuous operation, intermittent operation	CO3	40	50	10	

		Relevant		PLA/ELA	
S.	Laboratory Practical Titles	COs	Perfor		Viva-
No.		Number(s)	PRA* (%)	PDA** (%)	Voce (%)
	Power window no operation Power Door lock no operation				
	Immobilizer system and keyless entry no operationTrouble				
	(Error indication) in Automatic seat belt system. – Trouble (Error indication) in Air bag system.				
22.	Characterize the efficiency & output of an engine and electric	CO3	40	50	10
	machine				
23.	Determine the effects of aerodynamics & rolling resistance through vehicle coast-down testing	CO3	40	50	10
24.	Test the various sensors fitted on the vehicle.	CO3	40	50	10
25.	Send & receive messages on a CAN bus	CO4	40	50	10
26.	Perform vehicle simulation	CO4	40	50	10
27			10	50	10
27.	Identify the components for required for installing battery charging station.	CO5	40	50	10
28.	Conduct specific gravity test and open voltage test of the given battery used in automobile and find the state of charge.	CO5	40	50	10
29.	Characterize the performance of a battery pac	CO5	40	50	10
30.	Develop battery pack components	CO5	40	50	10
31.	Monitor and check performance of high voltage rechargeable	CO5	40	50	10
	energy storage system and battery management system.				
32.	Identify different cell chemistries and geometries	CO5	40	50	10
33.	Identify various sensors installed - Battery Temperature Mapping.	CO5	40	50	10
34.	Perform Verification of cell performance against supplier data sheet	CO5	40	50	10
35.	Perform Interfacing of BMS with Battery Pack configuration of BMS with software application.	CO5	40	50	10
36.	Measure voltage, current and temperature with BMS.	CO5	40	50	10
37.	Perform battery testing, charging and cycling operations	CO5	40	50	10
L					

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

- **Note:** This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.
- P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Hybrid & Electric Vehicle trainers' system	Hybrid & Electric Vehicle trainers' system	All
2.	EV & Hybrid trainer kits	EV & Hybrid trainer kits	All
3.	Fuel Cell trainer kits	Fuel Cell trainer kits	28-37
4.	Vehicle Electrification Simulation & Design Software	Vehicle Electrification Simulation & Design Software	All
5.	Electric Vehicle Automotive Drives	Electric Vehicle Automotive Drives	8-17
6.	EV STEM kits	EV STEM kits	All
7.	Wire cutter, Wire stripper, Screw driver, Wires, Multimeter, Battery, Automotive electrical component set-up, voltage tester	Wire cutter, Wire stripper, Screw driver, Wires, Multimeter, Battery, Automotive electrical component set-up, voltage tester	All
8.	Batteries and fuel cells	Different types of batteries and fuel cells used in EV and HV	28-37
9.	Hydrometer	Hydrometer	28-37

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Automotive Mechanics	S Srinivasan	Tata McGraw-Hill Pub, 2017 ISBN: 0070494916, 978-0070494916
2.	Electric and hybrid vehicles: design fundamentals	Iqbal Husain	CRC Press; 3rd edition,2021 ISBN-13: 978-1138590588
3.	Hybrid Electric Vehicles,	Chris Mi, M. Abul Masrur	Wiley, 2nd Edition, 2017 ISBN: 9781118970560
4.	Automobile electrical and electronic systems	Denton, Tom	Routledge; 5th edition ,2017 ISBN-13: 978-0415725774
5.	Advanced automotive fault diagnosis: automotive technology: vehicle maintenance and repair	Tom Denton	Routledge; 5th edition, 2020 ISBN-13: 978-0367330521
6.	Modern electric hybrid electric and fuel vehicles	EHSANI	CRC Press; 3rd edition, 2019 ISBN-13 : 978-0367137465
7.	Hybrid Electric Vehicle Design and Control: Intelligent Omnidirectional Hybrids	Yangsheng Xu, Jingyu Yan, Huihuan Qian, Tin Lun Lam	McGraw-Hill Education, 1 st ed. 2014 ISBN: 9780071826839
8.	Electric & Hybrid Vehicles	A.K. Babu	Khanna Publishing House ISBN:9386173719, 9789386173713
9.	Automobile Engineering (Vol I and II)	Dr. Kripal Singh	Standard Publishers, New Delhi ISBN: 8180142426, 978-8180142420
10.	A text book of Automobile Engineering	Rajput R. K.	Laxmi Publication Pvt Ltd. New Delhi ISBN: 9788170089919, 9788170089919

(b) Online Educational Resources:

- 1. NPTEL
- 2. Swayam /MOOCS
- 3. https://www.youtube.com/watch?v=hs7bABMtOMI&list=PLyqSpQzTE6M9G2SNxKfsVEjcM9MlJau4F
- 4. https://www.youtube.com/watch?v=uRYkSucD_Bc&list=PLFe9iOZ1HkC4nL8HbnBAiY4jVpfEhiGyx
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Lab Manuals
- 2. Users guide
- 3. Automobile Magazines

Diplon	na in Mechanical Engineering	Semester- V	SBTE, Bihar				
	Course Code	: 2400504B(T2400504B/P2400504B/S2400504B)					
A)	Course Title	: Artificial Intelligence (Basic)					
B)	Pre- requisite Course(s)	:					
C)	Rationale	:					

Artificial intelligence is the theory and development of computer systems able to perform tasks such as, visual perception, speech recognition, decision-making etc. normally requiring human intelligence. Data analytics gives the basis of developing any artificial intelligence system.

The Python programming language is one of the most accessible programming languages, has several modules to write programs to solve Artificial Intelligence, Machine Learning, Data Analysis problems. Moreover, it has simplified syntax and versatile data structures and functions speed up the code writing efficiently.

This course provides the basics for Artificial Intelligence problem solving techniques, data analytics and articulates the different dimensions of these areas. This course also provides the students the foundations for data analytics with python. The course explains data science techniques and the various Python programming packages required to prepare data for analysis, perform data analytics and create meaningful data visualization.

D) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Elaborate the use of Artificial Intelligence for the problem solving as Technological driver.
- **CO-2** Write Python Programmes for solving problems.
- **CO-3** Analyze given data by using NumPy package of Python.
- **CO-4** Analyze given data by using Pandas package of Python.
- **CO-5** Visualize given data set using Matplotlib.

E) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment		PO-7 Life Long Learning	PSO- 1	PSO- 2
CO-1	-	2	2	-	-	-	1		
CO-2	-	3	3	3	-	-	2		
CO-3	-	3	3	3	-	-	2		
CO-4	-	2	3	3	-	-	2		
CO-5	-	3	3	3	-	-	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

F) Teaching & Learning Scheme:

			Scheme of Study (Hours/Week)							
Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction	Notional Hours	Total Hours	Total Credits			
		L	т	(LI)	(TW+ SL)	(CI+LI+TW+SL)	(C)			
2400504B	Artificial Intelligence (Basics)	03	-	04	02	09	06			

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

G) Assessment Scheme:

			Α	ssessment Sch	neme (Mark	s)			
0		Theory Assessment (TA)			Term Work & Self- Learning		.ab Assessm	+LA)	
e Code				Assessment (TWA)		ent (LA)		(TA+TWA+LA)	
Course C	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+	
2400504B	Artificial Intelligence (Basics)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

٠

• ETA & ELA are to be carried out at the end of the term/ semester.

• Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

H) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

I) Theory Session Outcomes (TSOs) and Units: T2400504B

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
	Unit-1.0. Artificial Intelligence	CO-1
TSO 1a. Elaborate the use of ArtificialIntelligence		
TSO 1b. Explain various technological Driversof	Artificial Intelligence: What is AI?, Types of AI,	
Modern Al	History of AI, Turing Test, Symbol Systems and	
TSO 1c. Describe Knowledge representation	the scope of Symbolic AI, Structure of AI, Goals	
	of AI, Importance of AI, Techniques used in AI,	
TSO 1d. Classify Intelligent agents	Perception, Understanding and Action, Technological drivers of modern AI	
TSO 1e. List the characteristics of agents	Knowledge: Definition, Knowledge	
TSO 1f. Apply various search strategies for	Representation, objectives and requirements,	
problem solving	practical aspects of representation,	
	Components	
	Intelligent Agents: Agents and Environments,	
	Properties of environments, characteristics of	
	agents, classification of agents	
	Problem Solving: Problem Formulation,Goal	
	Formulation, State Space Search, Search	
	Problem, Basic search algorithm, Search Tree,	
	Search strategies–Uninformed and informed search, Breadth FirstSearch, Depth FirstSearch,	
	Best FirstSearch, Constraint Satisfaction	
	Problem (CSP), Back tracking Search.Problem	
	Definitions: N Queen Problem, 8Puzzle	
	Problem, Tic-tac-Toe.	
	Unit-2.0 Python Programming	
TSO 2a. Explain Python tokens and variables		CO-2
TSO 2b. Use the concept of I-value and r -value	Python character set, Python tokens, variables,	
	concept of I-value and r-value, use of	
TSO 2c. Write python program using various	comments.	
data types	Data types: number (integer, floating point,	
TSO 2d. Write Program using variousoperators in	complex), boolean, sequence (string,list,	
Python	tuple), none, mapping (dictionary), mutable	
TSO 2e. Write program using conditional	and immutable data types Operators:	
statements	arithmetic operators, relationaloperators,	
TSO 2f. Use various string functions for problem	logical operators, assignmentoperator,	
solving in python program	augmented assignmentoperators. Expressions,	
ISO 2g. Write programmes using various	statement, typeconversion & input/output:	
operations on list	precedence of operators, expression,	
TSO 2h. Write programmes by using various	evaluation of expression.	
operations on Tuples and Dictionary	Conditional and Iterative statements: if, if-else, if-	
TSO 2i. Create user defined functions	elif-else, for loop, range function, while loop,	
	break and continue statements, nested loops	
TSO 2j. Write python programmes using built-in functions	String, List, Tuples and Dictionary:	
	String: indexing, string operations (concatenation,	
TSO 2k. Describe the procedure to import	repetition, membership & slicing), traversing a	

Semester-V

oma in Mechanical Engineering		TE, Bihar
Major Theory Session Outcomes (TSOs)	Units	Relevant
		COs Numbe
		(s)
module in the Python	string using loops, built-in functions. Lists: introduction, indexing, list operations	
TSO 2I. Describe procedure to Import Libraryand	(concatenation, repetition, membership &	
functions in the Python	slicing), traversing a list using loops, built- in	
TSO 2m. Write program using Iterativestatements.	functions, linear search on list of numbers and	
	counting the frequency of elements in a list	
	Dictionary: accessing items in a dictionary using	
	keys, mutability of dictionary (adding a new	
	item, modifying an existing item), traversing a	
	dictionary, built-in functions	
	Python Functions: types of function (built- in	
	functions, functions defined in module, user defined functions), creating user defined	
	function, arguments and parameters, default	
	parameters, positionalparameters, function	
	returning value(s), flow of execution, scope of	
	a variable (global scope, local scope)	
	Modules and Packages: Importing module using	
	'import' Regular Expressions, Exception	
	Handling, PyPI Python PackageIndex, Pip Python package manager, Importing Libraries	
	and Functions	
	Unit-3.0 Data Analytics and Computing with	CO-3
TSO 3a. Explain Data Analytics and its elements	NumPy	
TSO 3b. Differentiate Data Analysis and Data		
Analytics	Data Analytics: Data, Types of Data, Importance of	
TSO 3c. Explain the use of open source data	Data, Data Analysis Vs Data Analytics, Types of Data Analytics, Elements of Analytics, Data	
TSO 3d. Differentiate Qualitative and	Analysis Process, Qualitative and Quantitative	
Quantitative data analysis	analyses, Open Source Data.	
TSO 3e. Explain procedure to Install NumPyLibrary	, NumPy Library: Introduction, Installation,	
TSO 3f. Use NumPy library to perform various	Ndarray: creating an array, intrinsic creation of an	
operations and functions on array	array, Data types, basic operations, aggregate	
TSO 3g. Write Programs using NumPy for array	functions, Indexing, slicing, Iterating, Conditions and Booleanarrays, Array	
manipulations	manipulation: Joining, splitting, shape changing,	
	sorting, Structured arrays, Reading and Writing	
	array data on a File.	
	Unit-4.0 Data Analysis with Pandas	CO-4
TSO 4a. Apply Pandas data structure for data	Pandas data structures: Series, Declaration,	
analysis	selecting elements, assigning values, Filtering	
TSO 4b. Write Programs using Pandas to perform	values, operations, mathematical functions,	
various operations and functions on series	evaluating values, handling missing data,	
TSO 4c. Perform various operation in a Data Frame columns and rows	creating series from dictionaries, adding two series.	
TSO 4d. Write Programme to read and write on CSV, XLS and Text data files	Data Frame: Defining, selecting elements, assigning values, membership, deleting a	
TSO 4e. Apply various data cleaning operations and	column, filtering. Index Objects: Indexing, Re-	
prepare data.	indexing, Dropping, sorting and ranking,	
· · ·	Descriptive Statistics Data Loading: Reading and Writing csv, xls, text	
	data files, Data Cleaning and Preparation:	
	Handling missing data, removing duplicates,	
	replacing values, Vectorized String Methods,	
	HierarchicalIndexing, Merging and	
	Combining, Data aggregation and Grouping.	

Semester-V

ĺ	Major Theory (Session Outcomes (TSOs)	Linite	Delevent
	Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number
			(s)
		Unit-5.0 Data Visualization with Matplotlib	CO-5
	 TSO 5a. Illustrate the use of Matplotlib and PyPlot package for showing plots and images TSO 5b. Customize plots with Colors, Markers, Line Styles, Limits, Tics, Labels, Legends, Grids TSO 5c. Differentiate various charts based on their applications 	Data Visualization: Introduction to Matplotlib ,PyPlot package, Figures andSubplots, showing plots and images Customizing Plots: Colors, Markers, Line Styles, Limits, Tics, Labels, Legends, Grids ,Annotating with text, Matplotlib	
		Configuration Chart types: Line, Bar, stacked bar, Box plots, pie chart , Histogram and Densityplots, Scatter	
		plot, Saving Plots to a file, Close and clear plots.	

Note: One major TSO may require more than one Theory session/Period.

J) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504B

Practical/ Lab SessionOutcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)
LSO 1.1 Use various data types and operators to solve given problem LSO 1.2 Use conditional and iterative statements for solving given problem	1	 Conditional and Iterative statements 1a. Write a program to generate randomnumbers between 5 and 10. 1b. Write a program to find the square root of a number. 1c. Write a python program to check if a numberis positive, negative or 0. 1d. Write Python program to print all primenumbers between 0-50. 	CO-2
LSO 2.1 Use string functions for performing various string operations	2	 String Handling 2a. Write a Programme that asks the user for astring with only single space between words, and return number of words in thestring. 2b. Write a Program that inputs a line of textand print the count of Vowels in it. 2c. Write a Program that inputs a line of text and print the biggest word in it. 2d. Write a Program that inputs a line of textand print a new line of text where each word of input line is reversed. 	CO-2
LSO 3.1 Use list operations for concatenation, repetition & slicing LSO 3.2 Perform various operation in the Tuples LSO 3.3 Perform various operation in the dictionary	3	 List, Tuples and Dictionary 3a. Write a python program to convert a stringto a list. 3b. Write a program to print the largest numberin a list. 3c. Given a tuple pairs = ((3,9), (8,4), (3,7), (24,18)), count the number of pairs (a, b)such that both a and b are odd. 3d. Write a program to input a list of numbers and swap elements at the even location withthe elements at the odd location. 3e. Write a program to merge two dictionaries. 	CO-2
LSO 4.1 Use built-in functions to solve given problem LSO 4.2 Create user defined functions to	4	Python Functions4a. Write a function to reverse a string.4b. Write a function to calculate the factorial of a	CO-2

1

oloma in Mechanical Engineering		Semester- V S	SBTE, Bihar	
Practical/ Lab SessionOutcomes (LSOs)		Laboratory Experiment/Practical Titles	Relevan COs Numbe (s)	
solve given problem		number.		
LSO 5.1 use basic data structure using NumPy LSO 5.2 Convert the list and tuple as NumPy array	5.	 Basic data structures in NumPy 5a. Create a List, set, tuple and dictionary whichstores the details of a student (roll no, name, dept, branch, percentage of mark) inPython and print the values. 5b. Convert the list and tuple as NumPy array. 	CO-3	
LSO 6.1 Create Arrays in Numpy using different intrinsic methods LSO 6.2 Perform arithmetic operations and mathematical operations using arrange and ones intrinsic method.	6	 Arrays in NumPy 6a. Create arrays using different intrinsic methods (ones, zeros, arange, linspace, indice) and print their values. 6b. Check the results of arithmetic operations like add(), subtract(), multiply() and divide()with arrays created using arrange and ones intrinsic method. 6c. Check the results of mathematical operations like exp(), sqrt(), sin(), cos(), log(), dot() on an array created using arrange intrinsic method. 	CO-3	
LSO 7.1 Apply aggregate functions on data by using Built-in function s in Numpy	7	 Built-in functions in NumPy. 7a. Load your class Mark list data from a csv (comma separated value) file into an array. Perform the following operations to inspect yourarray. Len(), ndim, size, dtype, shape, info() 7b. Apply the aggregate functions on this data and print the results. (Functions like min(), max(), cumsum(), mean(), median(), corrcoef(), std()) 	CO-3	
LSO 8.1 Handle multiple arrays by applying various operations on arrays	8	 Handling Multiple Arrays 8a. Create two python NumPy arrays (boys, girls) each with the age of nstudents in the class. 8b. Get the common items between twopython NumPy arrays. 8c. Get the positions where elements of twoarrays match. 8d. Remove from one array those items thatexist in another. 8e. Extract all numbers between a given rangefrom a NumPy array. 	CO-3	
LSO 9.1 Apply indexing on the given set of data	9	 Indexing in NumPy 9a. Load your class Mark list data from a csv fileinto an array. 9b. Access the mark of a student in a particularsubject using indexing techniques. 9c. Select a subset of 2D array using fancyindexing (indexing using integer arrays 	CO-3	
LSO 10.1 Create series using list and dictionary in pandas LSO 10.2 Print different values from series.	10	 Working with a Series using Pandas 10a. Create a series using list and dictionary. 10b. Create a series using NumPy functions in Pandas. 10c. Print the index and values of series. 10d. Print the first and last few rows from the series. 	CO-4	
LSO 11.1 Perform various operation in a Data Frame rows	11	Working with Data Frame Rows 11a. Slicing Data Frame using loc and iloc. 11b. Filter multiple rows using isin. 11c. Select first n rows and last n rows 11d. Select rows randomly n rows and fractionsof	CO-4	

ploma in Mechanical Engineering		Semester- V		
Practical/ Lab SessionOutcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)	
		rows (use df. sample method) 11e. Count the number of rows with eachunique value of variables 11f. Select nlargest and nsmallest values.11g. Order/sort the rows		
LSO 12.1 Apply different techniques to merge and combine data	12	 Merge and combine data 12a. Perform the append, concat and combinefirst operations on Data Frames. 12b. Apply different types of merge on data. 12c. Use a query method to filter Data Frame with multiple conditions. 	CO-4	
LSO 13.1 Create Linear Plot to identify various relation in the data using Matplotlib LSO 13.2 Create Scatter Plot to identify various relation in the data using Matplotlib	13	 Consider the Salary dataset, which contains 30 observations consisting of years of working experience and the annual wage. Download thedata set from https://www.kaggle.com/rohankayan/years-of- experience-and-salary-dataset 13a. Create a linear plot to identify the relationship between years of working experience and the annual wages with suitable title, legend and labels. 13b. Create a scatter plot to identify the relationship between years of working experience and the annual wages with suitable title, legend and labels. 13b. Create a scatter plot to identify the relationship between years of working experience and the annual wages with title, legend and labels. 13c. Also distinguish between observations that have more than 5 years of working experience and observations that have lessthan 5 years of working experience by using different colors in one single plot. 	CO-5	
LSO 14.1 Plot Bar graph by Changing the color of each bar, Change the Edge color, Linewidth and Line style.	14	 Consider the Iris dataset, where observations belong to either one of three iris flower classes. Download the data set from <u>https://www.kaggle.com/arshid/iris-flower- dataset</u> 14a. Visualize the average value for each feature of the Set osa iris class using a bar chart. 14b. Format the obtained bar graph by Changingthe color of each bar, Change the Edge color, Line width and Line style. 	CO-5	

- **K)** Suggested Term Work and Self Learning: S2400504B Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - b. Micro Projects:
 - 1. Handing Two-dimensional array in NumPy Download the data set from
 - https://archive.ics.uci.edu/ml/machine-learningdatabases/iris/iris.datahttps://www.kaggle.com/arshid/iris-flower-dataset
 - a. Import iris dataset with numbers and texts keeping the text intact into python NumPy.
 - b. Convert the 1D iris to 2D array (iris2d) by omitting the species text field.
 - c. Find the number and position of missing values in <code>iris2d's sepal_length</code>
 - d. Insert np.nan values at 20 random positions in iris 2d dataset
 - e. Filter the rows of iris2d that has petal_length> 1.5 and sepal_length< 5.0

Expected Outcome (Use various operations on two dimensional arrays in NumPy)

2. Handling missing data and duplicates in Pandas:

- a. Identify rows with missing data (is null (), notnull ()) and replace NA/Null data with a given value.
- b. Drop rows and columns with any missing data (dropna (), dropna (1))
- c. Find duplicate values and drop duplicates.
- d. Fill the missing values using forward filling and backward filling.
- e. Replace the missing value with new value and write the dataframe to a CSV file in the local directory.

Expected Outcomes (a. Identify missing data, b. Find Duplicates values, c. Write the dataframe to a CSV file in the local directory.)

3. Working with Data Frame Columns:

- a. Create and print a Data Frame.
- b. Find the descriptive statistics for each column.
- c. Group the data by the values in a specified column, values in the index.
- d. Set Index and columns in a Data Frame.
- e. Rename columns and drop columns
- f. Select or filter rows based on values in columns.
- g. Select single and multiple columns with specific names

Expected Outcome (Perform various operation in a Data Frame columns)

4. Indexing & Sorting in NumPy:

- a. Load your class Mark list data from a csv file into an array.
- b. Sort the student details based on Total mark.
- c. Print student details whose total marks is greater than 250 using Boolean indexing.

Expected Outcomes (a. Sort the given set of data, b. Use indexing in an array)

5. Array Slicing in NumPy:

- a. Load your class Mark list data into an array called "marks" to store students roll num, subject marks and result.
- b. Split all rows and all columns except the last column into an array called "features".
- c. Split the marks array into 3 equal-sized sub-arrays each for 3 different subject marks.
- d. Split the last column into an array "label".
- e. Delete the roll num column from the marks array and insert a new column student name in its place.

Expected Outcome (Use array slicing in Numpy for the given set of data)

6. Consider the Iris dataset, where observations belong to either one of three iris flower classes. Download the data set from

https://www.kaggle.com/arshid/iris-flower-dataset

- a. Visualize the Histogram for each feature (Sepal Length, Sepal Width, petal Length & petal Width) separately with suitable bin size and color.
- b. Plot the histograms for all features using subplots to visualize all histograms in one single plot. Save the plot as JPEG file.
- c. Plot the box plots for all features next to each other in one single plot. Perform 3D printing of plastic casing of inhaler used by Asthma patients and estimate the cost.

Expected Outcomes (a. Plot the Histogram for the various features using subplot, b. Plot the box plots for all features next to each other in one single plot)

c. Other Activities:

1. Lab Activities:

- Install Python IDE and important Python Libraries
- Install Anaconda and find the features of Jupyter Notebook.
- Import various module using 'import '
- Use Pip Python package manager.
- Import Libraries and Functions in Python

2. Seminar Topics:

- Technological rivers of modern Artificial Intelligence
- Intelligent Agents and Environments in Artificial Intelligence
- Various Search Strategies
- Python for Data Science
- Python Libraries and Packages used in data Science
- Data Visualization
- Various data set available over Internet

3. Self-Learning Topics:

- Use of AI in Engineering and Technology
- Data Science and Machine Learning
- Problem and Goal Formulation
- Search strategies
- Breadth First Search and Depth First Search
- Back tracking Search
- N Queen and 8 Puzzle Problem
- L) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	urse Evalua	tion Matrix			
	Theory Asses	sment (TA)**	Term Wor	k Assessme	nt (TWA)	Lab Assessment (LA) [#]		
COs	Progressive Theory Assessment (PTA)	Theory Assessment		Term Work & Self-Learning Assessment			End Laboratory Assessment	
	(111)			Micro	Other	(PLA)	(ELA)	
	Sem Test			Projects	Activities*			
CO-1	20%	20%	20%		30%			
CO-2	10%	20%	20%		20%	20%	25%	
CO-3	20%	25%	20%	30%	20%	20%	25%	
CO-4	30%	25%	20%	20%	30%	30%	25%	
CO-5	20%	10%	20%	50%		30%	25%	
Total	30	70	20	20	10	20	30	
Marks				50		1		

Legend:

*: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

Diploma in Mechanical Engineering

Semester- V

SBTE, Bihar

M) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title	Total	Delevent	Total		ETA (Marks)				
	Classroom Instruction (CI) Hours	Relevant COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)			
Unit-1.0. Artificial Intelligence	9	CO-1	14	6	5	3			
Unit-2.0. Python Programming	12	CO-2	14	4	4	6			
Unit-3.0. Data Analytics and Computing with NumPy	10	CO-3	17	4	5	8			
Unit-4.0 . Data Analysis with Pandas	10	CO-4	18	4	5	9			
Unit-5.0. Data Visualization with Matplotlib	7	CO-5	7	2	2	3			
Total Marks	48		70	20	21	29			

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

N) Suggested Assessment Table for Laboratory (Practical):

		Delevent	F	PLA/ELA	
S. No.	Laboratory Practical Titles	Relevant COs	Perfor	mance	Viva-
3. NO.		Number (s)	PRA* (%)	PDA** (%)	Voce (%)
1.	Conditional and Iterative statements	CO-2	-	90	10
2.	String handling	CO-2	-	90	10
3.	List, Tuples and Dictionary	CO-2	20	70	10
4.	Python Functions	CO-2	-	90	10
5.	Basic data structures in NumPy	CO-3	-	90	10
6.	Arrays in NumPy	CO-3	-	90	10
7.	Built-in functions in NumPy.	CO-3	20	70	10
8.	Handling Multiple Arrays	CO-3	20	70	10
9.	Indexing in NumPy	CO-3	-	90	10
10.	Working with a Series using Pandas	CO-4	-	90	10
11.	Working with Data Frame Rows	CO-4	20	70	10
12.	Merge and combine data	CO-4	40	50	10
13.	Consider the Salary dataset, which contains 30 observations consisting of years of working experience and the annual wage.	CO-5	80	10	10
14.	Consider the Iris dataset, where observations belong to either one of three iris flower classes.	CO-5	80	10	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

- **Note:** This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to beprepared by the course teacher for each experiment/practical to assess the student performance.
- O) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Group Discussion, Portfolio Based Learning, Live Demonstrations in Classrooms, Lab, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

P) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Computer Systems	Desktop Computers with i3 processor, 16 GB RAM, 512 GBHDD	S. No. 1 to 14
2.	Online Python IDE	https://www.online-python.com/	S. No. 1 to 14
3.	Jupyter Notebook	Download from https://jupyter.org/	S. No. 1 to 14
4.	Pip Python package manager	Download Pip 22.3 From https://pypi.org/project/pip/	S. No. 1 to 14
5.	Various modules, Libraries and Packages	NumPy, Pandas, Matplotlib, PyPlot package	S. No. 1 to 14

Q) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
1.	Artificial Intelligence Basics - A Non-Technical Introduction	TomTaulli	Apress (2019)
2.	Fundamentals of artificial Intelligence	Chowdhary K. R	Springer 2020
3.	Artificial Intelligence A Modern approach	Stuart J. Russell and Peter Norvig	PrenticeHall 2010, 3rdEdition
4.	Introduction to Computing and Problem-Solving using Python	E. Balagurusamy	McGraw Hill Education (India)Pvt. Ltd. 1st Edition /2016
5.	Learning Python Programming	Jeffrey Elkner, Allan B.Downey, Chris Meyers	Samurai Media Limited. 2016
6.	Python Programming	Ashok Namdev Kamthane and Amit Ashok Kamthane	McGraw Hill Education (India) Pvt.Ltd.2020, 2nd Edition
7.	Programming in Python	Dr. Pooja Sharma	BPB Publications 2017
8.	Taming Python by Programming	Jeeva ose	Khanna Book Publishing Co(P)Ltd, 2017, Reprinted2019
9.	Python Data Analytics	Fabio Nelli	Apress,2015
10.	Python for Data Analysis: Data Wrangling with Pandas, Numpy, and IPython	Wes McKinney	O'REILLY 2018, Second Edition

(b) Online Educational Resources:

- 1. NPTEL Web Content- Artificial Intelligence, Prof. P. Mitra, Prof. S. Sarkar, IITKharagpur URL: https://nptel.ac.in/courses/106/105/106105078/
- 2. https://www.learnpython.org
- 3. www.python.org
- 4. https://www.tutorialspoint.com/python

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

Data Source:

- https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/
- https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
- https://www.kaggle.com/arshid/iris-flower-dataset
- https://www.kaggle.com/rohankayan/years-of-experience-and-salary-dataset

- A) Course Code
 - Course Title : Internet of Things (Ba

:

- C) Pre- requisite Course(s)
- : 2400504C(T2400504C/P2400504C/S2400504C)
 : Internet of Things (Basic)
 : Digital Electronics, Electronics Circuits, Fundaments of Computers and Computer networks

D) Rationale

B)

The Internet of Things (IoT) is the upcoming field that has the capability to connect everything on the earth. This course focuses on the development of IoT concepts such as sensing, actuation with implementation of communication protocols.

The course also focuses on real life aspects of IoT and how to integrate it in real life projects. The course will simplify the concept of IoT by using the Node MCU board for IoT application development. In this course students will learn about the use of Node MCU and its applications as a beginner/intermediate in the field of IoT. Apart from this, students will learn about the APIs, by using which integration of features like send Email, WhatsApp messages and notification based on certain events in projects is possible. Overall, this course covers both hardware and software aspects of IoT with practical exposure.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Describe the functions of each block of the basic IoT system
- **CO-2** Explain communication protocol used in IoT and its applications
- **CO-3** Use appropriate sensors for the specific measurement through the IoT platform
- **CO-4** Explain APIs, client-server connections and its integration in real life applications.
- **CO-5** Build and test a complete, working IoT system involving prototyping, programming, and data analysis

Course		Programme Outcomes (POs)										
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Manageme nt	PO-7 Life Long Learning	PSO-1	PSO-2			
CO-1	3	-	-	-	-	-	-					
CO-2	1	2	2	2	2	-	-					
CO-3	1	3	2	2	2	2	2					
CO-4	1	1	2	3	-	2	2					
CO-5	1	1	3	2	2	3	3					

F) Suggested Course Articulation Matrix (CAM):

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

CourseCode	Course		cheme of Study (Hours/Week)				
	Title	Classroom Instruction (Cl)		Lab Notional Instruction Hours (LI) (TW+ SL)		Total Hours (CI+LI+TW+SL)	Total Credits (C)
		L	Т				
2400504C	loT (Basic)	03	-	04	02	09	06

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			As	sessment So	heme (Marl	(s)		
		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Asse (L	(TA+TWA+LA)	
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (T
2400504C	IOT (Basic)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

• ETA & ELA are to be carried out at the end of the term/ semester.

• Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400504C

Major Theory Session Outcomes (TSOs)	Units	Relevant
		COs
	Unit-1.0 Introduction to IoT	Number(s) CO-1 and CO-5
TSO.1. a. Describe the concept of IoT.		CO-1 and CO-5
TSO.1. b. Explain the functions of each block of the Basic IoT system.	 1.1 Basics of IoT, concepts of IoT, History of IoT 1.2 Basic IoT System and its building blocks 	
TSO.1. c. Compare features of various IoT platforms	1.3 Various platforms for IoT (e.g. AWS, AZURE, GCP)	
TSO.1. d. List IoT Real time Applications.	1.4 Introduction to Python programming and IoT software1.5 Applications of IoT	
TSO.1. e. Describe the functioning of given real- time applications		
TSO.2. a. Explain various communication protocols.	Unit 2.0 IoT Communication Protocols	CO-1 and
TSO.2. b. Explain working and application of blue tooth	2.1 Basics of given communication protocol alongwith its applications	C02
TSO.2. c. Explain working and application of ZigBee	2.2 Explain Communication Protocols MQTT	
TSO.2. d. Explain working and application of LoRa	2.3 Bluetooth Low Energy	
TSO.2. e. Explain working and application of Wi-fi	ZigBee	
	LoRa	
	Wi-fi	
TSO.3. a. Differentiate between sensor and Actuator.	Unit-3.0 Sensors and Hardware for IoT	CO-1, CO-3 and CO-5
TSO.3. b. Classify IoT sensors on the basis of their application.	3.1 Sensors and Actuators, Transducers, Classifications of sensors, IoT Sensors	
TSO.3. c. Describe the function of each block of Node MCU.	3.2 Development Boards, classifications, and basics of wireless networks, WiFi libraries	
TSO.3. d. Explain the procedure to connect sensors with Node MCU.	3.3 Introduction to node MCU, block diagram, functions, interfacing with sensors and publishing data on webserver	
	3.4 Device integration with node MCU	
	3.5 Interfacing of sensors with boards	
TSO.4. a. Define APIs and its uses	Unit.4.0 IoT APIs and its Integration	CO-1 and CO-4
TSO.4. b. Explain working and application of REST.	4.1 Explain APIs and its use	
TSO.4. c. Explain working and application of SOAP	4.2 Explanation of given IoT APIs along with its	
TSO.4. d. Explain working and application of json	applications 4.3 MQTT, Broker, subscriber, publisher	
TSO.4. e. Explain the integration of API in IoT	4.4 REST	
application development.	SOAP	
	4.5 JSON 4.6 Programming API using Python	
TSO.5. a. Differentiate between industrial IoT and IoT.	Unit. 5.0 IoT Applications: -	CO-1 andCO-5
TSO.5. b. Describe the applications of IoT in the	5.1 Industrial IoT and Internet of everything	
medical field.	5.2 IoT for consumer electronics products	

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO.5. c. Describe the medical applications of IoT	5.3 IoT for Medical applications	
in the agriculture field.	5.4 IoT for Agriculture	
TSO.5. d. Describe the innovative IoT applications.	5.5 IoT for security and Law enforcement	

O may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504C

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant CosNumber (s)
LSO 1.1 List various IoT platforms. LSO 1.2 List Down broad features of given platforms. LSO 1.3 List IoT based features in python language.		Prepare a list of platforms used for IoT. Prepare a list of features of above IoT platforms. Prepare a list of features provided by	CO-1
LSO 2.1 Arduino connection with Arduino IDE. Connect Bluetooth with Arduino. verification of data communication withBluetooth.		python language for IoT applications. Establish connectivity between various components of IoT. Establish connection between Arduino and Bluetooth module.	CO-2
LSO 3.1 Measure the temperature of the givensensor. LSO 3.2 Measure the humidity of the given sensor.	3.	Establish connection using WiFi Publish data on the IoT platform. Measure the temperature of a remotely located temperature sensor Using IOT	CO-3
LSO 3.3 Measure the pressure of the given sensor.		based temperature data-monitoring system. Measure the humidity of a remotely located humidity sensor Using IOT based humidity data-monitoring system.	
		Measure the pressure of a remotely located pressure sensor Using IOT based pressure data-monitoring system.	
LSO 4.1 Working with APIs. LSO 4.2 Implementation of APIs using POSTMANApplication.	4	Download and Configure POSTMAN Application Verify REST APIs through POSTMAN. Verify JSON APIs through POSTMAN. Verify SOAP APIs through POSTMAN.	CO-4
LSO 5.1 Identification of components for variousapplications. LSO 5.2 Estimate the cost for components.	5.	Identify components for given project Estimate the cost to make Project working.	CO-5

- L) Suggested Term Work and Self Learning: S2400504C Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - a. Assignments: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Prepare a report on IoT Systems using Internet data.
- 2. Market survey to identify various types of IoT sensors and its pricing.
- 3. Interface IR sensor with Arduino and send the data to Arduino cloud.
- 4. Send IoT data using Node MCU to things Speak cloud.
- 5. Interface Bluetooth module with Arduino and send data using the Bluetooth module.

c. Other Activities:

1. Seminar Topics: - "Future of IoT"

"Technologies for IoT ", "Smart City and IoT"

- 2. Visit to industry for latest IoT setup in industrial process.
- 3. Surveys of market for availability of various types of sensors and its pricing.
- 4. Product Development: Development of projects for real life problem solution using IoT.
- 5. Software Development: various open source platform operations.

d. Self-Learning Topics:

- 1. IoT hardware and their use for various applications
- 2. IoT sensors technical specifications
- 3. IoT enabled services
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	ourse Evalu	ation Matrix			
	Theory Asses	sment (TA)**	Term Wor	k Assessme	ent (TWA)	Lab Assessment (LA) [#]		
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Wo	ork & Self-I Assessme	U	Progressive Lab Assessment	End Laboratory Assessment	
	Class/Mid	• •		Micro	Other Activities*	(PLA)	(ELA)	
	Sem Test			Projects				
CO-1	10%	10%	20%		33%	10%	20%	
CO-2	15%	10%	20%		33%	15%	20%	
CO-3	30%	30%	20%		34%	15%	20%	
CO-4	20%	30%	20%	50%		30%	20%	
CO-5	25%	20%	20%	50%		30%	20%	
Total	30	70	20	20 20 10		20	30	
Marks				50	1			

Legend:

*: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total	ETA (Marks)			
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0. Introduction to IoT	5	CO-1	7	3	4	-	
Unit-2.0. IoT Communication protocols	5	CO-2	7	3	2	2	
Unit-3.0. Sensors and Hardware for IoT	14	CO-3	21	6	7	8	
Unit-4.0 IoT APIs and its Integration	14	CO-4	21	6	5	10	
Unit-5.0. IoT Applications	10	CO-5	14	2	4	8	
Total Marks	48		70	20	22	28	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant		PLA/ELA		
S. No.	Laboratory Practical Titles	COs		rmance	Viva-	
		Number(s)	PRA* (%)	PDA** (%)	Voce (%)	
1.	Prepare a list of platforms used for IoT.	CO-1	60	30	10	
2.	Prepare a list of features of above IoT platforms.	CO-1	60	30	10	
3.	Prepare a list of features provided by python language for IoT applications.	CO-1	60	30	10	
4.	Establish connectivity between various components of IoT.	CO-2	60	30	10	
5.	Establish connection between Arduino and Bluetooth module.	CO-2	60	30	10	
6.	Establish connection using WiFi	CO-2	70	20	10	
7.	Publish data on the IoT platform.	CO-3	70	20	10	
8.	Measure the temperature of a remotely located temperature sensorUsing IOT based temperature data-monitoring system.	CO-3	60	30	10	
9.	Measure the humidity of a remotely located temperature sensor Using IOT based temperature data-monitoring system.	CO-3	60	30	10	
10.	Measure the pressure of a remotely located temperature sensor UsingIOT based temperature data-monitoring system.	CO-3	60	30	10	
11.	Publish the data using Mqtt	CO-4	60	30	10	
12.	Download and Configure POSTMAN Applications	CO-4	60	30	10	

		Relevant	P	LA/ELA	
S. No.	Laboratory Practical Titles	COs	Perfo	Viva-	
5. 10.		Number(s)	PRA* (%)	PDA** (%)	Voce (%)
13.	Verify REST APIs through POSTMAN.	CO-4	60	30	10
14.	Verify JSON APIs through POSTMAN.	CO-4	60	30	10
15.	Verify SOAP APIs through POSTMAN.	CO-4	60	30	10
16.	Identify components for given project	CO-5	50	40	10
17.	Estimate the cost to make Project working.	CO-5	50	40	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

- **Note:** This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.
- P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriatelyselected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1	Bluetooth Modem- BlueSMiRF Silver	Sparkfun Bluetooth modem	As mentioned above list
2	Postman Software	Open-source downloadable	
3	Node MCU board	Generic	
4	loT free cloud	Arduino cloud/Thing Speak/Blynk	-
5	ATAL Lab Package-1 Package-2 Package-4	As per the list as address below ATAL Equipment list' (http://aim.gov.in/guidelines-for-school.php).	

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.			
1	Internet of Things Architecture and Design Principles	Raj Kamal	Mc Graw Hills, New Delhi ISBN 13: 978-93-90722-38-4
2	Internet of things (IoT): technologies,applications, challenges and solutions	Edited By BK Tripathy , J Anuradha	CRC Press, ISBN 9780367572921, June 30, 2020
3	Internet-of-Things(IoT) Systems: Architectures, Algorithms, Methodologies	by Dimitrios Serpanos & Marilyn Wolf	Springer; 1st ed. 2018 edition (17 January 2018)
4	Custom Raspberry Pi Interfaces: Design and build hardware interfaces for the Raspberry	Pi by Warren Gay	Apress; 1st ed. edition (23 February 2017), ISBN- 10: 9781484224052, ISBN-13: 978-1484224052
5	'Learning Internet of Things',	Peter Waher	Packt Publishing, 2015, ISBN9781783553532, https://lib.hpu.edu.vn/handle/123456789/31693
6	Sensors, Actuatorsand Their Interfaces,	N. Ida	Scitech Publishers, 2014.

(b) Online Educational Resources:

- 1. nptel.iitm.ac.in/courses/.../IIT.../lecture%2023%20and%2024.htm
- 2. en.wikipedia.org/wiki/Shear and moment diagram
- 3. www.freestudy.co.uk/mech%20prin%20h2/stress.pdf
- 4. www.engineerstudent.co.uk/stress_and_strain.html
- 5. https://www.iit.edu/arc/workshops/pdfs/Moment_Inertia.pdf
- 6. https://www.veritis.com/blog/aws-vs-azure-vs-gcp-the-cloud-platform-of-your-choice/
- 7. https://wiki.python.org/moin/TimeComplexity
- 8. www.engineerstudent.co.uk/stress_and_strain.html
- 9. https://www.iit.edu/arc/workshops/pdfs/Moment_Inertia.pdf
- 10. Amini, P. (2014). Sulley: Pure Python fully automated and unattended fuzzing frame- work.
- 11. https://github.com/OpenRCE/sulley
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Lab Manuals

Rapid technological innovation has provided users cutting-edge products at affordable prices. Traditionally, drones had been limited to military use due to high costs and technical sophistication. In recent years, the drone has number of commercial uses and are also proving to be extremely beneficial in places where a man cannot reach or is unable to perform in a timely and efficient manner. Today, drones are used in construction, photography, agriculture, defense, environmental studies and monitoring and other industries to protect the skies, repopulate forests and accomplish much more on a huge scale. This course will acquaint the student with the basic drone technology and applicable drone rules and regulations in India. Considering that the main operational areas of diploma holders, it is essential that he should be exposed to basic drone designing, programming, operating, maintaining and using them safely.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Operate a drone safely by applying appropriate drone rules and regulations.
- **CO-2** Design the structure of drone with drone components and equipment.
- **CO-3** Interface flight controller board with sensors, ESC and radio communication unit in drone technology.
- **CO-4** Use drone simulator and identify different types of ports and connectors of drone.
- **CO-5** Use python programming while drone designing.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Outcomes (POs)									
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Developme nt of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Managem ent	PO-7 Life Long Learning	PSO-1	PSO-2		
CO-1	2	-	-	-	3	-	2				
CO-2	3	2	3	3	-	-	-				
CO-3	3	2	3	3	-	-	-				
CO-4	2	-	-	2	-	3	2				
CO-5	-	2	2	3	-	-	-				

Legend: High (3), Medium (2), Low (1) and No mapping (-)

* PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)							
Code	Title	Classroom Instruction (CI)		Instruction Instruction		Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	Т						
2400504D	Drone Technology (Basics)	03	-	04	02	09	06		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			As	sessment S	cheme (Mar	ks)		
se Code		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)
Course	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (T/
2400504D	Drone Technology (Basics)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400504D

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
 TSO 1a. Describe the various historicalevolutionary steps of drone technology TSO 1b. Explain Drone motion based on principle of aerodynamics. TSO 1c. Classify different types of drones and make chart of its application, advantages and disadvantages TSO 1d. Develop attitude to follow proper rules and regulations of drones flying in India. TSO 1e. Explore future prospects of drones inIndia. 	Unit-1.0Introduction to Drone Technology Introduction to Drones and UAV Definition History Drone in Indian aspect Introduction to Flight Dynamics Various types of Drones and their respective Applications Multirotor drones Fixed wing structure Drone flights using an understanding of FAA DGCA Digital sky platform RPTO Drone regulations-No drone zones	CO-1
 TSO 2a. Explain the use and function of different types of Drone components. TSO 2b. Select suitable drone frame and propellers for given application. TSO 2c. Explain working principle and function of different sensors used in drone technology. TSO 2d. Write use of Gyro sensor and Accelerometer in drone. TSO 2e. Describe different types and capacity of Battery used in various drone applications. TSO 2f. State the selection criteria of motor for given drone application. TSO 2g. Write advantage of BLDC motors in making of Drones. 	Unit-2.0 Drone and its components Drones components Drone frame Propellers Sensors Gyro sensor and Accelerometer Speed and Distance Sensor Temp sensor Barometer	CO-2
TSO 3a. Explain four types of motion used indrone's operation.	Unit-3.0 Drone controller and motion Propulsion and Vertical Motion Controller and Flying Instructions	CO-3

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
 TSO 3b. Describe the working and applications of Electronic speed controller. TSO 3c. Explain the working principle of Flight controller unit used in drone. TSO 3d. Explain Radio communication unit used in drone. TSO 3e. Explain the communication of Flight controller board with motor, ESC and sensors with suitable diagram 	Electronic speed Controller (ESC) Flight Controller Board (FCB) Radio Communication Transmitter and Receiver for radio signal	
TSO 4a.Describe utility of different communication port used in drone.	Unit-4.0Connections and Interfaces of Devicesin Drone and Drone Simulator	CO-4
TSO 4b. Identify different types of connectors and write their specificationsTSO 4c. Explain the use of drone simulatorsoftware and hardware.	Communication Port PWM RS232, RS422, RS485 UART CAN I2C Different types of connectors and its specification Drone Simulator software Drone simulator Hardware	
 TSO 5a.Write basic code in Python. TSO 5b. Explain structure and components of a Python program. TSO 5c. write syntax of loops and decision statements in Python. TSO 5d. Explain steps to create functions and pass arguments in Python. 	Unit-5.0 Introduction to Python for Drone Python programing refreshers for IoT, AI andDrone Integration of devices with cloud services Microsoft Azure, AWS	CO-5

Note: One major TSO may require more than one theory session/period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504D

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1 Choose suitable materials for making drone frame.	1.	Determine the strength of materials used in drones frame.	CO-2
LSO 2 Select suitable materials for making drone propellers.		Determine the strength of materials used in drones Propellers.	CO-2
LSO 3 Use appropriate battery as per need of flight time for specific drone application.	3.	Test different parameters of batteries used in drones	CO-2
LSO 4 Identify suitable motors as per payload of specific drone application.		Test motors suitable for specific Drone application.	CO-2
LSO 5 Operate Gyro sensor and Accelerometer.	5.	Test and measure Gyro sensor and Accelerometer and their characteristics.	CO-2
LSO 6.1 Identify different sensors based on their characteristics. LSO 6.2 Interface different types of sensor in drone.	6.	Test different sensors and their characteristics with Microcontroller based Flight controller board.	CO-2, CO-3
LSO 7 Demonstrate four type of drone motion.	7.	Determine thrust/torque of motor by changing different drone motion	CO-2, CO-3

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 8.1 Configure Flight control board (FCB) LSO 8.2 Demonstrate use of Flight control board (FCB	8.	Test and troubleshoot Flight control board (FCB).	CO-3
LSO 9.1 Measure various parameters of sensor LSO 9.2 Interface sensor with flight controller board.	9.	Test and perform communication of Flight control board (FCB) with sensor	CO-3, CO-2
LSO 10 Use motor with flight controller board.	10.	Test and perform communication of Flight control board (FCB) with motor.	CO-3, CO-2
LSO 11 Interface ESC with flight controller board.	11.	Test and perform communication of Flight control board with ESC.	CO-3
LSO 12 Configure radio communication device to control drones	12.	Test and perform communication of Flight control board with RF transceiver.	CO-3
LSO 13.1 Identify different types of ports and connectors of drone. LSO 13.2 Assemble drone component.	13.	Test Hardware assembly for drone.	CO-4 CO-3
LSO 14.1 Identify different motions in drone simulator. LSO 14.2 Operate drone in simulator for specific task	14.	Perform different motion in drone simulator.	CO-4
LSO 15.1 Write code of loop and decision statement in python. LSO 15.2 Interpret loop and decision statement LSO 15.3 Debug code of loop and decision statement	15.	Build and run loops and decision statements for specific application in Python.	CO-5
LSO 16.1 Make function in python. LSO 16.2 Interpret given function statement LSO 16.3 Debug code of function in python	16.	Build and Run functions for specific application and pass arguments in Python.	CO-5
LSO 17.1 Identify python programming steps to interface drone components. LSO 17.2 Identify error in python program LSO 17.3 Debug the given python program	17.	Write basic programming in python to interface different component of Drones	CO-5, CO-3

- L) Suggested Term Work and Self Learning: S2400504D Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in linewith the targeted COs.

b. Micro Projects:

- 1. Design drone for simple application.
- 2.Test different sensors, their characteristics and make chart which are used in different drones' applications.
- 3. Download 5 videos on drone design with different components. Watch them and write report on it.
- 4. Write report on Drone application for precision agriculture.
- 5. Survey nearby electronics shop and Prepare report of list of drone component and its specification.
- 6.Visit nearby tool room, small industry, Drone training institute facilities. Prepare report of visit with special comments of drone technology used, material used, cost of printed component.

c. Other Activities:

- 1.Seminar Topics-History of Drone, Drone regulations, Proximity sensor, Bernoulli's principle apply in drone, Radio communication used in drones, Drone Simulator, Python Programming.
- 2.Visits: Visit nearby tool room, small industry, Drone training institute facilities. Prepare report of visit with special comments of drone technology used, material used, cost of printed component.
- 3.Surveys: Survey nearby electronics shop and Prepare report of list of drone component and its specification and explore Drone simulator.
- 4.Product Development
- 5.Software Development

d. Self-Learning Topics:

- 1. History of Drones
- 2. Drone in Indian aspect
- 3. Drone regulations
- 4. Principle of aerodynamics for Drones
- 5. Drone simulator
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	urse Evalua	tion Matrix			
	Theory Asses	sment (TA)**	Term Work Assessment (TWA)			Lab Assessment (LA) [#]		
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Work & Self-Learning Assessment			Progressive Lab Assessment	End Laboratory Assessment	
	Class/Mid		Assignments	Assignments Micro Other		(PLA)	(ELA)	
	Sem Test			Projects	Activities*			
CO-1	10%	10%	10%		10%			
CO-2	30%	30%	30%	33%	30%	30%	30%	
CO-3	30%	30%	30%	34%	30%	30%	30%	
CO-4	15%	10%	15%		15%	20%	20%	
CO-5	15%	20%	15%	33%	15%	20%	20%	
Total	30	70	20	20	10	20	30	
Marks				50				

Legend:

*: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

- **: Mentioned under point- (N)
- #: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total	ETA (Marks)		
	Classroom Instruction (CI) Hours	Cos Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0. Introduction to Drone Technology	6	CO-1	08	03	02	03
Unit-2.0. Drone and its component	12	CO-2	20	05	07	08
Unit-3.0. Drone controller and motion	12	CO-3	20	05	07	08
Unit-4.0. Connections and Interfaces of Devices in Drone and Drone Simulator	8	CO-4	08	03	02	03
Unit-5.0 . Introduction to Python for Drone	10	CO-5	14	04	04	06
Total Marks	48		70	20	22	28

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant		PLA/E	LA
S. No.	Laboratory Practical Titles	COs	Perfor	mance	Viva-
5. NO.		Number(s)	PRA* (%)	PDA** (%)	Voce (%)
1.	Determine the strength of materials used in drones frame.	CO-2	60	30	10
2.	Determine the strength of materials used in drones Propellers.	CO-2	60	30	10
3.	Test different parameters of batteries used in drones	CO-2	50	40	10
4.	Test motors suitable for specific Drone application.	CO-2	50	40	10
5.	Test and measure Gyro sensor and Accelerometer and their characteristics.	CO-2	50	40	10
6.	Test different sensors and their characteristics with Microcontroller based Flight controller board.	CO-2, CO-3	50	40	10
7.	Determine thrust/torque of motor by changing different dronemotion	CO-2, CO-3	60	30	10
8.	Test and troubleshoot Flight control board (FCB).	CO-3	60	30	10
9.	Test and perform communication of Flight control board (FCB) with sensor	CO-3, CO-2	60	30	10
10.	Test and perform communication of Flight control board (FCB) with motor.	CO-3, CO-2	60	30	10
11.	Test and perform communication of Flight control board with ESC.	CO-3	60	30	10
12.	Test and perform communication of Flight control board with RF transceiver.	CO-3	60	30	10

		Relevant		PLA /ELA		
S. No.	Laboratory Practical Titles	COs	Perfor	mance	Viva-	
5. NO.		Number(s)	PRA*	PDA**	Voce	
			(%)	(%)	(%)	
13.	Test Hardware assembly for drone.	CO-4	50	40	10	
		CO-3				
14.	Perform different motion in drone simulator.	CO-4	50	40	10	
15.	Build and run loops and decision statements for specific applicationin	CO-5	50	40	10	
	Python.					
16.	Build and Run functions for specific application and pass arguments	CO-5	50	40	10	
	in Python.					
17.	Write basic programming in python to interface different componentof	CO-5,	50	40	10	
	Drones.	CO-3				

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to beprepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Drone Frame	Tricopter/Quadcopter/Hexacopter	1-13
2.	Propellers	10X4.5 CW/Others	1-13
3.	Speed Sensor	3.3 or 5.0Vdc	1-13
4.	Distance Sensor	5Volt operating voltage	1-13
5.	Gyro sensor and Accelerometer	5Volt operating voltage	1-13
6.	Barometer	Altitude tracking, temp range from 25°C to 40°C	1-13
7.	TOF Sensor	Accurate ranging up to 4 m, Fast ranging frequency up to 50	1-13
8.	Battery	Lithium Polymer Battery,2200mAH/others	1-13
9.	Motor	BLDC,1000kv or 1000RPM/volt	1-13
10.	Electronic speed Controller (ESC)	30 Amp,2-4s or cell	1-13
11.	Flight Controller Unit	KK 2.1.5/ ArdupilotAPM 2.8/ Pixhawk/others	1-13

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
12.	Transmitter and Receiver for radio signal	4 channels/6 Channels, 2.4 GHz & 5.8 GHz	1-13
13.	Drone Simulator Software	RC flight simulator	14
14.	Python Software	Hardware required-More than 4 GB RAM, 64-bitCPU preferable	15,16,17

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
1.	Make: Getting Started with Drones: Build and Customize Your Own Quadcopter	Terry Kilby&Belinda Kilby	Shroff/Maker Media, First edition 2016, ISBN-978-9352133147
2.	Agricultural Drones: A Peaceful Pursuit	K R Krishna	Apple Academic Press,1st edition 2018, ISBN-978-1771885959
3.	DIY Drone and Quadcopter Projects: A Collection of Drone-Based Essays, Tutorials, and Projects	Editors of Make	Shroff/Maker Media; First edition 2016, ISBN-978-9352133994
4.	Building Multicopter Video Drones: Build and fly multicopter drones to gather breathtaking video footage	Ty Audronis	Packt Publishing Limited; Illustrated edition,2014, ISBN-978-1782175438
5.	The Complete Guide to Drones	Adam Juniper	Ilex Press, Extended 2nd Edition,2018 ISBN-9781781575383

(b) Online Educational Resources:

- 1. https://nptel.ac.in/courses/101104073
- 2. https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle
- 3. https://www.scienceabc.com/innovation/what-is-drone-technology.html
- 4. https://www.dronezon.com/learn-about-drones-quadcopters/what-is-drone-technology-orhow-does-drone-technology-work/
- 5. https://www.youtube.com/watch?v=OWaXIK9sHeE
- 6. https://books.google.co.in/books?id=2M0hEAAAQBAJ&printsec=copyright&redir_esc=y#v=onep age&q&f=false
- Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

Note:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Lab Manuals

Dij	ploma in Mechanical Engineering	Semester- V	SBTE, Bihar	
A)	Course Code	: 2400504E(T2400504E/P2400504E/S2400504E)		
B)	Course Title	: 3D Printing and Design (Basic)		
C)	Pre- requisite Course(s)	: Computer Aided Modeling		

:

D) Rationale

Additive manufacturing (AM) or Additive layer manufacturing (ALM) is the industrial production name for 3D Printing. 3D Printing is a process that makes solid objects from a digital model. It involves depositing material either metal, powdered plastic, or liquid in thin layers (2D) to get a 3D object. This basic course on 3D Printing tries to develop understanding of the process of making real object from digital model in the students. It also covers the software/hardware required, various materials used for FDM based 3D Printing and details about printing process parameters. The knowledge gained through this course will help the students to take up advanced course on 3D Printing in next semester.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Develop CAD models for 3D Printing.
- **CO-2** Import and Export CAD data in .STL file format to generate GCODE file.
- **CO-3** Select suitable FDM based 3D Printing material for given applications.
- **CO-4** Select suitable FDM based 3D Printing process parameters for given situations.
- **CO-5** Produce products using FDM based 3D Printing processes.

F) Suggested Course Articulation Matrix (CAM):

Course Outcomes (COs)	Programme Outcomes(POs)							Programme Specific Outcomes* (PSOs)	
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2
CO-1	3	-	3	2	-	-	2		
CO-2	3	2	-	2	-	-	-		
CO-3	3	3	-	2	3	-	-		
CO-4	3	3	-	2	-	-	-		
CO-5	3	-	3	3	-	3	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Scheme of Study (Hours/Week)							
Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)	
		L	Т					
2400504E	3D Printing and Design (Basic)	03	-	04	02	09	06	

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

		Assessment Scheme (Marks)						
	Theory Asse		Theory Assessment		Term Work &		essment	•
		(TA	A)	Self-Le	earning	(L	A)	1 +
					sment			MA
	o		r	(TV	(TWA)		1	(TA+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (T/
2400504E	3D Printing and Design	30	70	20	30	20	30	200
	(Basics)							

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- Separate passing is must for progressive and end semester assessment for both theory and practical.
- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400504E

М	ajor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1b.	Explain CAD-CAM and related terminologies. Convert the given CAD file format into others. Transfer the given CAD data to CAM facilities.	Unit-1.0 Additive Manufacturing Introduction and CAD	CO1
TSO 1d. TSO 1e. TSO 1f. TSO 1g.	Classify 3D Printing processes. List the advantages of additive manufacturing processes over conventional manufacturing processes.	 1.1 CAD-CAM and its integration. 1.2 CAD- Part and Surface modeling. 1.3 CAD file formats. 1.4 Additive v/s Conventional Manufacturing processes. 1.5 Process chain for 3D Printing. 1.6 Classification of 3D Printing Processes. 1.7 Product design and prototyping. 1.8 Reverse Engineering for 3D Printing. Unit-2.0 Data Preparation for 3D Printing 	CO1, CO2
TSO 2c. TSO 2d. TSO 2e. TSO 2f.	Use the given alternative 3D printing interface. Generate STL file for the given CAD file. Repair the given STL file. Apply part orientation and support techniques for the given situation. Perform slicing of the given CAD model using the given slicing software. Generate tool path using simulation software for the given situation.	 STL interface Specification, STL data generation, STL data Manipulation. Advantages and limitations of STL file format, Open files, Repair of STL files, Alternative 3D Printing interfaces. Part orientation and support generation, Factors affecting part orientation, Various models for part orientation determination. The function of part supports, Support structure design, Automatic support structure generation. Model Slicing and Contour Data organization, Direct and adaptive slicing: Identification of peak features, Adaptive layer thickness determination. Tool path generation. 	
TSO 3b.	Explain the given 3D Printing process. Select FDM 3D Printing materials for the given application. Select FDM based 3D Printing processes parameters for given application with justification.	 Unit-3.0 Additive Manufacturing Techniques 3.1 Fused Deposition Modeling (FDM), Stereo lithography (SLA), Selective Laser Sintering (SLS), Binder Jetting, Material Jetting, Direct Energy Deposition and Laminate Object Manufacturing. 3.2 FDM based 3D printing process details. 3.3 3D Printing materials and selection for FDM. 3.4 FDM Process parameter for various applications. 	CO3, CO4
TSO 4a.	Identify various Aerospace, Electronics, Health care, Automotive, Construction, Food processing, Machine tool components that can be 3D Printed.	 Unit-4.0 Application of 3D Printing 4.1 Additive Manufacturing Application Domains: Aerospace, Electronics, Health Care, Defense, Automotive, Construction, Food Processing, Machine Tools 	CO3, CO4

Major Theory Session Outcomes (TSOs)		Units		Relevant COs Number(s)	
TSO 4b.	Estimate the cost and time of FDM based 3D printing of the given component.				
TSO 5a.	Select suitable 3D Printer (FDM) and software for the given application with justification.	Uni 5.1	t-5.0 3D Printers and Software and Scanners Construction details and working of established	CO4, CO5	
TSO 5b.	Analyze the effect of given FDM based 3D printing process parameters using 3D printer software simulation.	5.2 5.3	FDM based 3D printers for plastics parts. Accuracy, Precision and Tolerance in 3D printing.		
TSO 5c.	List steps to perform 3D scanning of the given object.		Onshape, Tinkercad, Ultimaker Cura, MeshLab, Simplyfy 3D, Repetier host, Slic3r, etc. – use and		
TSO 5d.	Repair 3D scanned digital model.	5.4	operation of anyone. 3D Scanners and working.		
TSO 5e.	Set different FDM 3D printing process parameters to get a sound plastic component.	5.5	Producing a part using FDM based 3D Printer.		

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504E

Practical/Lab Session Outcomes (LSOs)		S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1. LSO 1.2.	Use CAD software. Prepare digital models of simple 3D entities.	1.	Develop digital models of following simple components using any CAD software:	CO1
LSO 2.1.	Prepare digital models of complex 3D entities and assemblies.	2.	Develop digital models of following assemblies using any CAD software: • Connecting Rod • Piston • Electric switch • Bathroom Tap • Mouse	CO1
	Surf web for downloading readymade free CAD models. Convert one CAD file format into another.	3.	Download three digital CAD models freely available on web in different formats and then convert them into .stl/obj format.	CO1
LSO 4.1. LSO 4.2.	Use the given Slicing software for 3D Printing. Perform slicing operation on the given digital model.	4.	Perform slicing operation on one digital model available under each Pr. No.1, 2 and 3.	CO2
LSO 5.1. LSO 5.2.	Use the available 3D printing software. Selection of 3D printing process and performance parameters.	5.	Analyse the effect of different process parameters, materials on printing time, material required, surface finish, etc. through simulation using 3D printing software on sliced models available from Pr. No. 4	CO3, CO4, CO5
LSO 6.1. LSO 6.2.	Produce single plastic components using available 3D printer. Perform post processing operations on printed component.	6.	Print one single component on available FDM based 3D printer with PLA/ABS material	CO3, CO4, CO5

Prac	tical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)	
LSO 7.1.	Select appropriate layer thickness, tolerance, fit.	7.	Print one assembly on available FDM based 3D printer with PLA/ABS material	CO3, CO4, CO5	
LSO 7.2.	Produce an assembly of plastic components using available 3D printer.				
LSO 8.1.	Choose suitable material for printing flexible structure (assembly of same small pieces to give flexible fabric effect).	8.	Model and print a flexible fabric structure with PLA/ABS material (assembly of same small pieces to give flexible fabric effect)	CO3, CO4, CO5	
LSO 8.2.	Choose suitable design/shape to create a flexible type structure.				
LSO 8.3.	Produce flexible plastic structure using available 3D printer.				
LSO 9.1.	Selection of 3D printing process parameters.	9.	Change printing process parameters and repeat experiment number 6.	CO4, CO5	
LSO 10.1.	Use of available 3D scanner.	10.	Scan the given complex component using	CO5	
LSO 10.2.	Develop 3D digital model using scanning approach.		available 3D Sanner.		
LSO 10.3.	Modeling of complex 3D objects using 3D scanning.				
LSO 11.1.	Produce a complex plastic structure using available 3D printer and scanner.	11.	Print the 3D scanned digital model of Pr. No. 10 on available FDM based 3D printer with PLA/ABS	CO5	
LSO 11.2.	Apply Reverse Engineering approach to exactly 3D print an existing real object.		material		

- L) Suggested Term Work and Self Learning: S2400504E Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Perform 3D printing of plastic casing of inhaler used by Asthma patients and estimate the cost.
- 2. Download 5 videos on 3D printing of different components, watch them and write a report to detail out the steps involved, 3D Printer used, 3D Printing software used, material used, complexity involved, printing time, post processing steps used.
- 3. Print two pieces of same components using ABS and PLA and compare their strength, surface roughness, weight, cost.
- 4. Download two 3D printing free software and try to check their compatibility with your lab printer.

c. Other Activities:

- 1. Seminar Topics:
 - Commercially available 3D printers and software.
 - Strength of 3D printed Plastic components as compared to Die cast Plastic components.
 - Properties of PLA and ABS 3D printing materials.
 - Reverse engineering application of 3D Printing.
- 2. Visits: Visit nearby tool room/industry with 3D Printing facilities. Prepare report of visit with special comments of 3D printing technique used, material used, single component/batch production/mass production and cost of printed component.

- 3. Self-Learning Topics:
 - 3D printing of flexible plastic components.
 - 3D printing of micro/mini components.
 - Conversion of CAD file formats into IGES.
 - 3D scanning process.

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix										
	Theory Asses	sment (TA)**	Lab Assessment (LA) [#]								
COs	Progressive Theory Assessment (ΡΤΔ)	Theory Assessment Assessment (ETA) (PTA)		& Self Learn	ing Assessment	Progressive Lab Assessment	End Laboratory Assessment				
	Class/Mid			Micro	Other Activities*	(PLA)	(ELA)				
	Sem Test			Projects							
CO-1	15%	15%	15%	-	-	20%	20%				
CO-2	10%	10%	10%	25%	-	10%	20%				
CO-3	15%	15%	15%	25%	33%	15%	20%				
CO-4	30%	30%	30%	25%	33%	15%	20%				
CO-5	30%	30%	30%	25%	34%	40%	20%				
Total	30	70	20 20 10			20	30				
Marks				50							

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

The percentage given are approximate

• In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total	ETA (Marks)			
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0 Additive Manufacturing Introduction and CAD	8	CO1	10	3	3	4	
Unit-2.0 Data Preparation for 3D Printing	8	CO1, CO2	10	3	2	5	
Unit-3.0 Additive Manufacturing Techniques	8	CO3, CO4	10	5	2	3	
Unit-4.0 Application of 3D Printing	12	CO3, CO4	20	5	6	9	
Unit-5.0 3D Printers and Software and Scanners	12	CO4, CO5	20	4	6	10	
Total	48	-	70	20	19	31	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

				PLA/ELA	
S.	Labourtow, Dupotical Titles	Relevant COs	Perfor	mance	Viva-
No.	Laboratory Practical Titles	Number(s)	PRA*	PDA**	Voce
			(%)	(%)	(%)
1.	Develop digital models of following simple components using any CAD software: Nut Bolt Network cable Jack Coat button	CO1	30	60	10
	• Spoon				
2.	Develop digital models of following assemblies using any CAD software: Connecting Rod Piston Electric switch Bathroom Tap Mouse	C01	40	50	10
3.	Download three digital CAD models freely available on web in different formats and then convert them into .stl/obj format.	C01	30	60	10
4.	Perform slicing operation on one digital model available under each Pr. No.1, 2 and 3.	CO2	30	60	10
5.	Analyse the effect of different process parameters, materials on printing time, material required, surface finish, etc. through simulation using 3D printing software on sliced models available from Pr. No. 4	CO3, CO4, CO5	30	60	10
6.	Print one single component on available 3D based Printer with PLA/ABS material	CO3, CO4, CO5	30	60	10
7.	Print one assembly on available 3D based Printer with PLA/ABS material	CO3, CO4, CO5	30	60	10
8.	Model and print a flexible fabric structure with PLA/ABS material (assembly of same small pieces to give flexible fabric effect)	CO3, CO4, CO5	40	50	10
9.	Change printing process parameters and repeat experiment number 6.	CO4, CO5	40	50	10
10.	Scan the given complex component using available 3D Sanner.	CO5	40	50	10
11.	Print the 3D scanned digital model of Pr. No. 10 on available 3D based Printer with PLA/ABS material	CO5	30	60	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

K) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S.	Name of Equipment,	Broad	Relevant
No.	Tools and Software	Specifications	Experiment/Practical
			Number
1.	High end computers	Processor Intel Core i7 with Open GL Graphics Card, RAM 32 GB,	All
		DDR3/DDR4, HDD 500 GB, Graphics Card NVIDIA OpenGL 4 GB, OS	
		Windows 10	
2.	Parametric Computer Aided Design software	CATIA/Solid works/NX/Creo OR Available with CoE	1,2
3.	3D printer	Fused Deposition Modelling system with complete accessories; Build	6, 7, 8, 10
		Volume-300 x 300 x 300mm or Higher; Layer Thickness-0.1 – 0.4 OR	
		Available with CoE	
4.	3D Printing Material	ABS/PLA OR Available with CoE	6, 7, 8, 10
5.	3D Printing software	Latest version of software like:	3,4
		Cura/PrusaSlicer/ideaMaker/Meshmixer/MeshLab	
		OR Available with CoE	
6.	Post processing	Deburring tools (tool handle & deburring blades), Electronic Digital	6, 7, 8, 10
	equipments and tools	Caliper, Cleaning Needles, Art knife set, Long nose pliers, Flush	
		cutters, Wire brush, Nozzle cleaning kit, Tube cutter, Print removal	
		spatula, Needle file, Cutting mat, Glue stick, Wire stripper etc.	
7.	3D Scanner and Processing	Handheld 3D scanner, Accuracy up to 0.1 mm, Resolution up to 0.2	10
	software	mm, Real time onscreen 3D model projection and processing,	
		Wireless technology with an inbuilt touch screen and battery,	
		Extended field of view for capturing both large and small objects,	
		Processing Software OR Available with CoE	

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing	Andreas Gebhardt,	Hanser Publisher, 2011 ISBN: 156990507X, 9781569905074
2.	3D Printing and Design	Sabrie Soloman	Khanna Publishing House, Delhi ISBN: 9789386173768
3.	3D Printing and Rapid Prototyping- Principles and Applications	C.K. Chua, Kah Fai Leong	World Scientific, 2017 ISBN: 9789813146754
4.	Getting Started with 3D Printing: A Hands-on Guide to the Hardware, Software, and Services Behind the New Manufacturing Revolution	Liza Wallach Kloski, Nick Kloski	Make Community, LLC; 2nd edition, 2021 ISBN: 9781680450200
5.	Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing	Lan Gibson, David W. Rosen, Brent Stucker	Springer, 2010 ISBN: 9781493921133
6.	Laser-Induced Materials and Processes for Rapid Prototyping	L. Lu, J. Fuh, Y.S. Wong	Kulwer Academic Press, 2001 ISBN: 9781461514695

(b) Online Educational Resources:

- 1. https://onlinecourses.nptel.ac.in/noc21_me115/preview
- 2. https://archive.nptel.ac.in/courses/112/104/112104265/
- 3. https://www.youtube.com/watch?v=b2Od4YHcLAQ
- 4. https://www.youtube.com/watch?v=EF8CNR-gcXo
- 5. https://www.academia.edu/41439870/Education_Resources_for_3D_Printing
- 6. https://www.think3d.in/landing-pages/beginners-guide-to-3d-printing.pdf
- 7. https://all3dp.com/1/types-of-3d-printers-3d-printing-technology/

(c) Others:

- 1. 3D Printing Projects DK Children; Illustrated edition, 2017
- 2. The 3D Printing Handbook: Technologies, design and applications Ben Redwood, Filemon Schöffer, Brian Garret, 3D Hubs; 1st edition, 2017
- 3. 3D Printer Users' Guide
- 4. 3D Printer Material Handbook
- 5. Lab Manuals

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

Diploma in Mechanical Engineering		Semester- V SBTE	, Bihar
• >			
A)	Course Code	: 2400504F(T2400504F/P2400504F/S2400504F)	
B)	Course Title	: Industrial Automation (Basic)	
C)	Pre- requisite Course(s)	: Basic Mechanical Engineering, Basic Electrical Engineering	g, Digital
		Electronics and Basic programming skills	

:

D) Rationale

The technological education and research scenario, all over the world, is turning towards a multidisciplinary one. The present scenario is different as compared to the recent past in the sense that the engineering disciplines are now dilating instead of diverging. The primary reason being that the current technological designs are of highly complex and inter-interdisciplinary nature involving synergistic integration of many aspects of engineering knowledge base. Industrial automation has become an essential part of every modern industry. Automation helps industry to increase the productivity, quality, accuracy and precision of industrial processes. Stiff competition, higher quality standards and growing concerns of safety & environmental damage have pushed the Industrial sector to adapt state-of-the-art Automation Techniques for effective utilization of resources and optimized performance of the plants. Today engineer is needed to meet the requirements of designing appropriate automation systems. They should have the knowledge of different fields like PLC and PID based Controller, Instrumentation, Networking, Industrial Drives, SCADA/HMI, High speed data acquisition, etc., to become a successful automation engineer. The discipline Automation is enormous in magnitude. The students passing this course will gain basic understanding about industrial automation and will be prepared to take up the advance course in Industrial automation in next semester.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Apply principles and strategies for automation for a given situation.
- **CO-2** Use sensors and input devices as per given situation.
- **CO-3** Test the given PLC for its functionality.
- **CO-4** Use actuators and output devices as per given situation.
- **CO-5** Test the working of various types of control system and controllers

F) Suggested Course Articulation Matrix (CAM):

		Programme Specific Outcomes* (PSOs)							
Course Outcomes (COs)	PO-1 Basic and Discipline- Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Developm entof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	2	-	2	2	-	2		
CO-2	3	2	2	2	-	-	2		
CO-3	3	2	2	2	2	-	2		
CO-4	3	2	2	2	2	-	2		
CO-5	3	2	2	2	-	-	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

* PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

		Scheme of Study(Hours/Week)								
Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)			
		L	Т							
2400504F	Industrial Automation (Basic)	03	-	04	02	09	06			

Legend:

- CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)
- LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

		Assessment Scheme (Marks)								
		Theory As (T/		Term Work & Self- Learning Assessment (TWA)		Lab Assessment (LA)		Learning Assessment (LA)		
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)		
2400504F	Industrial Automation (Basic)	30	70	20	30	20	30	200		

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon thecompletion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Society connect, Multidisciplinary aspects, Indian Knowledge System (IKS) and others need to be integrated.

J) Theory Session Outcomes (TSOs) and Units: T2400504F

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
processes and products for automation. TSO.1.e Select principles and strategies for automation for a given situation using 4R's and 1U TSO.1. f Select criteria for factory automation and processes automation for a given industry. TSO.1. g Describe briefly different systems used for industrial automation. TSO.1.h Describe IOT, IIOT and role of robots with respect to automation.	Unit-1.0 Overview of Industrial Automation Introduction to Industry 4.0 and its components, Issues and challenges in automation Need of automation in industries, Principles and strategies of automation, factory automation, process automation Basic elements of an automated system, Structure of Industrial Automation Advanced automation functions, Levels of automations Industrial control Systems- Process andDiscrete system Types of automation system: Fixed, Programmable, Flexible IntegratedAutomation and its application Different systems used for Industrial automation: PLC, HMI, SCADA, DCS, Drives. Introduction to Internet of Things (IoT) and Industrial Internet of Things (IIOT) and its application in Automation. Role of robots in automation and its components.	C01
 TSO.2. a Explain PLC and list its advantages over relay systems. TSO.2.b Distinguish between PLC and a PC, PLC and dedicated controllers. TSO.2.c List the types of PLCs and brands available in the market. TSO.2.d Describe the function of each block of a PLC with the help of a block diagram. TSO.2.e Describe the basic sequence of operation of a PLC with a simple example. TSO.2.f Explain different PLC programming languages withsimple examples. TSO.2.g Describe a simple PLC programming using ladder logic specifying I/O addressing TSO.2.h List the applications of PLC 	 Unit-2.0 Fundamentals of PLC Introduction to PLC, evolution of PLC and Personal Computer(PC) Comparison of PLC and dedicated controllers like PAC and CNC Types of PLC – Fixed, Modular and their types Different brands of PLCs available in the market Building blocks of PLC -CPU, Memory organization, Input-Output modules (Discrete and Analog) Specialty I/O Modules, Power supply PLC programming languages with simpleexamples: Functional Block Diagram (FBD), Instruction List. Structured text, Sequential Function Chart (SFC), Ladder Programming PLC I/O addressing in ladder logic Simple programming example using ladderlogic Applications of PLC: Traffic light control, Elevator control, Motor sequencing control, Tank level control, temperature control, Conveyor system control 	CO2
TSO.3.a Identify the commonly used input field devices in PLC installations along with	Unit 3.0 – Sensors and Input Field Devices	CO3

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
their symbols. TSO.3.b Draw symbol of various switches used in PLC installations describing the function of each switch. TSO.3.c Identify the various digital input devices used in a PLC installation. TSO.3.d Identify the commonly usedsensors as input field devices found in PLC installations. TSO.3.e Describe the working of different types of discrete sensors giving their applications. TSO.3.f Describe the working of different types of advanced sensors giving their applications. TSO.3.g Select Sensors as per the given requirement for ecofriendly automation TSO.4.a Classify the actuators.	 Manually operated Switches Toggle switch, pushbutton switch, knife switch and selector switches Mechanically operated switches, Limit switch, Temperature switch (Thermostat), Pressure switch, Level switch and their symbols Discrete/Digital Input device, Constructionand working of Sensors Proximity sensors- Inductive, Capacitive, Optical and ultrasonic 	CO4
 TSO.4.b Describe the construction and working of a given actuator. TSO.4.c Explain the basic principle of operation of a given actuator. TSO.4.d Differentiate between hydraulic and pneumatic actuators 	 Introduction to actuators, Classification ofactuators Mechanical actuators -Translational and rotation motion, kinematic chains, cams, gears, belt and chain drives, bearings Hydraulic and Pneumatic actuators- linear and rotary actuators, single and doubleacting cylinder, directional, process and pressure control valves Electrical actuators Electromechanical actuators Construction, working and application of Stepper motors, AC/DC Servo motors, BLDC Motor (Very brief) Electrohydraulic actuators-Construction, working and application of Electro- hydrostatic actuator (EHA), ON/OFF Electro-hydraulic Rotary Actuator (E2H90, Control Valve Rotary Actuator (E2HR), Solenoid valve 	

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)	
 SO.5.a Describe the basic process control system with the help of a block diagram SO.5.b Explain the types of control available in a process control SO.5.c Describe the different types of controllers in a closed loop systemwith the help of a block diagram SO.5.d Describe the construction, working and application of a given control system components. 	Block diagram of a basic control system Open and closed loop system, their transfer function First order and second order system and their output response and parameters Different types of inputs-step and ramp Types of control – On-off, Feed forward, Open loop and closed loop control and Transfer function	CO5	
	PID Controller		

Note: One major TSO may require more than one theory session/period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504F

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1 Identify various building blocks and major automation components in a given robotic system LSO 1.2 Identify various building blocks and major automation components in a given electrical drives	1.	Identify major automation components in a given system	CO1
LSO 1.3 Analyze and plan the steps to automate the given system.	2.	Analyze given traditional machine in the laboratory for and identify thesteps and components required to automate it.	
LSO 1.4. Identify the building blocks of a given typical SCADA system LSO 1.5. Identify the symbol library of SCADA software	3.	Use Scada software for simple application	
LSO 2.1 Identify the various parts and front panel status indicators of the given PLC.	4.	Observe various parts and frontpanel indicators of a PLC	CO2
LSO 2.2 Identify different input and output devices that can be connected to a given PLC.	5.	Observe different types of switches and their symbols sensors, lamp, alarm, motor, fan used in a PLC	
LSO 2.3 Test the analog input and output lines of the given PLC.	6.	Identify Analog input and output lines of a PLC	
LSO 2.4 Test the digital input and outlines of the given PLC.	7.	Identify digital input and output lines of a PLC	
LSO 2.5 Use PLC to control the devices like Lamp, Alarm, motor using push button switches	8.	Practice using PLC to control various digital and analog output devices	
LSO 3.1. Test the response of digital inductive proximity sense or used to detect different types of materials	9.	Identify different types of digital inductive proximity sensor and itsuse	CO3
LSO 3.2. Test the response of digital capacitive proximity sensors used to detect o different materials	10.	Identify different types of digital capacitive proximity sensor and itsuse	
LSO 3.3. Test the response of digital optical proximity sensor used to detect different materials	11.	Identify different types of digital optical proximity sensor and its use	

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 3.4. Test the response of digital ultrasonic proximity sensors used to detect different materials	12.	Identify different types of digital ultrasonic proximity sensor and itsuse	
LSO 3.5. Use thermistor to measure temperature of a given material	13.	Identify different types ofthermistor and its use	
LSO 3.6. Use Thermocouple to measure the temperature of a given liquid and plot the output voltage versus temperature	14.	Observe the conversion of temperature to electric parameter conversion of a Thermocouple	
LSO 3.7. Use RTD to control the temperature of an oven	15.	Observe different types of RTDs usedin industries for temperature measurement	
LSO 3.8. Use flow sensors to measure the flow of a given liquid or gas	16.	Observe different types of flow sensors used in industries for flow measurement	
LSO 3.9. Use pressure sensors to measure the pressure of a liquid or gas	17.	Observe different types of pressure sensors used in industries for pressure measurement	
LSO 3.10. Use load cell for measurement of mechanical force/weight.	18.	Observe the different types of loadcell used in industries for force/weight measurement	
 LSO 4.1 Design and actuate pneumatic circuit for lift control LSO 4.2 Design a pneumatic system that rivets the pockets on jeans LSO 4.3 Design pneumatic circuit to open and close the security gate and control the speed. LSO 4.4 Design a circuit for speed control of hydraulic motor meter out circuit by using 4/3 DC valve. LSO 4.5 Design a circuit for speed control of double acting cylinder meter in by using 4/2 dc solenoid valve. LSO 4.6 Designing a circuit for speed control of double acting cylinder meter out by using 4/3 solenoid valve. LSO 4.7 Direct acting of hydraulic motor LSO 4.8 Operate stepper motor and control the motor by changing number of steps, the direction 	19. 20. 21.	Design and actuate pneumatic/ hydraulic circuit for the given situation Operate hydraulic motor Operate stepper motor	CO4
of rotation and speed. LSO 4.9 Identify the components of thermal and magnetic actuators available in the laboratory. LSO 4.10 Use thermal and magnetic actuators	22.	Thermal and magnetic actuators	-
LSO 5.1 Test the output response of a open loop closed loop and feed forward path	23.	Analyze the given system to studyopen loop, closed loop and feed forward path.	CO5
LSO 5.2 Build and test the output response of a first order system for a step input using a CRO	24.	Analyze the given first order system and its transfer function and output response	
LSO 5.3 Build and test the response of a second order system for a step input using CRO. Also mark various parameters	25.	Analyze the given second order system and its transfer function andoutput response	
LSO 5.4 Test the Output response of an on- off and Proportional control-based level control system.	26.	Analyze the given water level control system with on-off, Proportional control.	

Pra	actical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 5.5	Test the Output response pf a P+I+D based level control system.	27.	Analyze the given water level control system with P+I+D control.	

L) Suggested Term Work and Self Learning: S2400504F Some sample suggested assignments, micro project and other activities are mentioned here for reference.

- **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in linewith the targeted COs.
- i. State three advantages of using programmed PLC timer over mechanical timing relay.
- ii. Prepare a list of open source PLC software
- iii. Prepare a list of open source SCADA software.
- iv. List the practical applications of PLC systems
- v. List the practical applications of SCADA systems.
- vi. Compare the PLC and PC with regard to:
 - Physical hardware differences
 - Operating environment
 - Method of programming
 - Execution of program
- vii. Prepare classification chart of different types of actuators.
- viii. Differentiate between Nano and micro actuators.

b. Micro Projects:

- 1. Develop a relay-based motor control automation such that the motor reverses its direction when thelimit switches are activated.
- 2. Develop a simulation to connect analog and digital input to the PLC.
- 3. Develop a simulation to connect analog and digital output to the PLC.
- 4. Develop a simple automatic water level controller using magnetic float switch.
- 5. Develop a simple automatic door system using optical sensor and linear actuator.
- 6. Troubleshoot the faulty equipment/kit available in automation laboratory
- 7. Select one industry and analyze the process and propose the automation strategies' that can beused for automation.
- 8. Develop a working model of a given application using given actuators and valves.

c. Other Activities:

- 1. Seminar Topics- PLC architecture, Different types of sensors, Industrial Applications of PLC and SCADA
- 2. Visits Visit any industry with full or semi automation and prepare a report on type of automationused.
- 3. Surveys-Carry out a market/internet survey of PLC and prepare the comparative technicalspecifications of any one type of PLC (Micro or Mini) of different manufacturer.
- 4. Product Development- Develop a prototype automatic railway crossing system Software Development- Download any open source software for PLC and install on your laptop/PC and carry out basic PLC programming
- 5. Surveys carry out market survey for different types of electrical actuators available and prepare the comparative technical specifications of electrical actuators used in industries.
- 6. Visit industry and prepare a report on different types of hydraulic and pneumatic circuits used by the industry in the given section, components used, power requirement, output achieved and maintenance activities required.

d. Self-Learning Topics:

1. Use of PLC for different industrial applications

- Use of sensors in commercial field 2.
- 3. Use of sensors in home automation
- Compare Specifications of PLCs of different manufacturers of any one type PLC 4.
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix											
	Theory Asses	sment (TA)**	Term Wor	k Assessme	nt (TWA)	Lab Assessment (LA) [#]						
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)			0	Progressive Lab Assessment	End Laboratory Assessment					
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)					
	Sem Test			Projects	Activities*							
CO-1	15%	15%	20%		30%	20%	20%					
CO-2	20%	25%	20%		20%	25%	20%					
CO-3	25%	20%	20%	30%	20%	20%	20%					
CO-4	25%	20%	20%	20%	30%	20%	20%					
CO-5	15%	20%	20%	50%		15%	20%					
Total	30	70	20	20	10	20	30					
Marks				50		1						

Legend:

*: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

• The percentage given are approximate

- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.
- N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number		Total	Relevant	Total		ETA (Marks)	
		Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0	Overview of Industrial Automation	8	CO1	11	3	4	4
Unit-2.0 F	undamentals of PLC	12	CO2	17	5	5	7
Unit-3.0	Sensors and Input Field Devices	9	CO3	14	4	6	4
Unit-4.0	Actuators and Output Devices	10	CO4	14	4	6	4
Unit- 5.0 Control System		9	CO5	14	4	5	5
Total Marks		48		70	20	26	24

Note:

Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant Cos	PLA /ELA			
S No	Loboratory, Dreatical Titles	Number	Perforn	Viva-		
S. No.	Laboratory Practical Titles	(s)	PRA* (%)	PDA** (%)	Voce (%)	
1.	Identify major automation components in a given system	CO1	50	40	10	
2.	Analyze given traditional machine in the laboratory for and identify the steps and components required to automate it.	CO1	50	40	10	
3.	Use Scada software for simple application	CO1	50	40	10	
4.	Observe various parts and front panel indicators of a PLC	CO2	50	40	10	
5.	Observe different types of switches and theirsymbols sensors, lamp, alarm, motor, fan used in a PLC	CO2	50	40	10	
6.	Identify Analog input and output lines of a PLC	CO2	50	40	10	
7.	Identify digital input and output lines of a PLC	CO2	50	40	10	
8.	Practice using PLC to control various digital and analog output devices	CO2	50	40	10	
9.	Identify different types of digital inductiveproximity sensor and its use	CO3	50	40	10	
10.	Identify different types of digital capacitiveproximity sensor and its use	CO3	50	40	10	
11.	Identify different types of digital optical proximity sensor and its use	CO3	50	40	10	
12.	Identify different types of digital ultrasonicproximity sensor and its use	CO3	50	40	10	
13.	Identify different types of thermistor and its use	CO3	50	40	10	
14.	Observe the conversion of temperature toelectric parameter conversion of a Thermocouple.	CO3	50	40	10	
15.	Observe different types of RTDs used in industries for temperature measurement	CO3	50	40	10	
16.	Observe different types of flow sensors used inindustries for flow measurement	CO3	50	40	10	
17.	Observe different types of pressure sensors used in industries for pressure measurement	CO3	50	40	10	
18.	Observe the different types of load cell used inindustries for force/weight measurement	CO3	50	40	10	
19.	Design and actuate pneumatic/ hydraulic circuitfor the given situation	CO4	50	40	10	
20.	Operate hydraulic motor	CO4	50	40	10	
21.	Operate stepper motor	CO4	50	40	10	
22.	Thermal and magnetic actuators	CO4	50	40	10	
23.	Analyze the given system to study open loop, closed loop and feed forward path.	CO5	50	40	10	

		Relevant Cos	PLA /ELA			
	Lakensteine Drastical Titles	Number	Perform	Viva-		
S. No.	Laboratory Practical Titles	(s)	PRA* (%)	PDA** (%)	Voce (%)	
24.	Analyze the given first order system and its transfer function and output response	CO5	50	40	10	
25.	Analyze the given second order system and itstransfer function and output response	CO5	50	40	10	
26.	Analyze the given water level control system with on-off, Proportional control.	CO5	50	40	10	
27.	Analyze the given water level control system withP+I+D control.	CO5	50	40	10	

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to beprepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ ImplementationStrategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and CommunicationsTechnology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical
140.			Number
1.	SCADA software (reputed make like Allen Bradley, Siemensetc.,)	Ready-to-use symbol library, React and respond in real- time, Real time monitoring, Friendly, manageable, secure, extensible, Easy-to-use, easy to implement, Easy configuration, simplified maintenance, Communication with PLC, easy and flexible alarm definition, data collection and analysis for new and existing systems, easy-to-use for report generation, open access to historical data, different packages available with input/output structure. Open source software SCADA software: like Ellipse/FTVSE/Wonderware/ open SCADA can also be used	3
2.	Universal PLC Training System with HMI (Of reputed make such as Allen bradely, Siemens, etc.,) Compatible with SCADA software	Human Machine Interface (HMI) display, PLC with 16 digital inputs, 16 digital outputs with RS232 communication facility. Open platform to explore wide PLC and HMI applications. Industrial look & feel. Toggle switches, push to ON switch, proximity sensor, visual indicator, audio indicator, and DC motor. Experiments configurable through patch board. Powerful instruction sets. Several sample ladder and HMI programs. PC based ladder and HMI programming. Extremely easy and student friendly software to develop different programs. Easy downloading of programs. Practice troubleshooting skills. Compact tabletop ergonomic design. Robust construction. PLC gateway for cloud connectivity. Open source software like Ladder logic simulator, Pico soft Simulator, Logixpro simulator, Simple EDA tools can also be used	4,5,6,7,8

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
3.	Proximity sensors kit	The kit should comprise of the following proximity sensor - Inductive Proximity Sensor, Capacitive Proximity Sensor, Magnetic Sensor, Optical Sensor, Audio and LED indicator for the object detection. Along with learning material	9,10,11,12
4.	Temperature transducer kit	Temperature Transducers Test Bench includes different types of temperature sensors including bimetallic strip, RTD, thermocouple, thermistor, RTD/thermocouple temperature display and thermistor, temperature display, heater, fan, switches and its indicator. Separate heater and fan chamber withstand. On panel digital voltmeter, digital ammeter, RTD/thermocouple temperature display, NTC temperature display, toggle switch for heater and fan with indicator, experiments configurable throughpatch board, heavy duty Test bench, castor wheel (with locking mechanism) is provided at legs of Test bench so that it can be easily moved, enhanced electrical safety consideration.	12,13,14
5.	Pressure transducer kit	Pressure transducer kit should include different types of pressure sensors including capacitive pressure transducer, load cell, bourdon tube pressure gauge, and pressure vessel. Pressure vessel with pressure gauge, safety valve, non-returning valve bourdon gauge and capacitive transducer and air compressor, on panel digital voltmeter, digital ammeter, 4-20ma display, 0- 10V DC display, toggle switch for compressor, load cell with suitable weight, experiments configurable through patch board, self - contained, bench-mounting arrangement, castor wheel (with locking mechanism) is provided at legs of Test bench so that it can be easily moved, enhanced electrical safety consideration. Detailed experiment manual should be supplied with the kit.	16
6.	Flow sensor kit	Turbine flow sensor kit	15
7.	Strain Gauge kit	The kit should provide study of Strain Gauge and their application for measurement of Strain. It should help to study bridge configuration of Strain Gauge and the signal conditioning circuits required to measure strain. It should use cantilever beam arrangement to produce strain on Strain Gauge. The Strain Gauges are firmly cemented to the cantilever at the point wherethe strain is to be measured. Weights are placed on free end of cantilever. Strain developed changes the resistance of Strain Gauge which is detected by full bridge configuration. It should comprise of Seven-segment LED display showing strain in micro strain units. Different weights should be provided to perform linearity and sensitivity experiments. Detailed experiment manual should be supplied with the kit. Test-points to observe input output of each block, onboard gain and offset null adjustment, built in DC Power Supplies, 3½ digits LED display, onboard Cantilever arrangement, high repeatability and reliability The kit should be capable of performing following experiments: • Measuring strain using strain gauges and cantileverassembly.	17

Exper	Relevant riment/Practical Number
eration	
base to show the	18
sturdy base to	18
sturdy base to	18
I standard units Ilic circuits. ubricator (FRL Box with slide Iler lever valve valve, 5/2 pring return, 5/2 Hand lever valve operation of a SAC, e with Mushroom g IN & OUT, Shuttle e with Quick ith Quick coupler rer – for cushioning SAC), Swivel fitting , Multi distributor ng) n (with LED), Double red Switch, Magnetic elays, Electrical itch Unit, Timer	18
standard units and c circuits. /are bricator (FRL Unit) th slide valve ever valve, 3/2 NC nal pilot operated n spring return, 5/2 nd lever valve with ,5/2 Value with lve (OR valve), AND upler plug, Double	18
n sp nd , ^c lve uple	oring return, 5/2 lever valve with 5/2 Value with (OR valve), AND

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
		 coupler plug Aluminum Profile Table Top, Profile Table Top, Miniature Double Acting Cylinder (DAC), Single Solenoid Valve with Spring Return, Double Solenoid Valve (with LED) Magnetic Reed Switch, Relay Logic Unit – 2C/0-3 relays, Electrical Push Button Unit, Electrical Selector Switch Unit (Black Selector – 1 no, Green Push Button – 1 no), Timer, Simulation software 	
13.	Advanced Electro - Hydraulic and Electro - Pneumatic Hardware systems with work stationsand simulation software	 Electro - Hydraulic and Electro - Pneumatic Hardware systemswith PLC and simulation software Profile plate, Frame with Castor Wheels, Filter, Lubricator, Regulator with pressure gauge, Hand Slide Valve, Connectioncomponent set, Plastic Tubing, Power Supply & cables, Pressure Gauge, 3/2 Way double solenoid valve 	18
14.	Output devices	Servomotor, DC motor, AC motor, stepper motor, Conveyer Belt control by PLC, water level control etc.	18,19,20
15.	Thermal actuators	Hot-And-Cold-Arm Actuators, Chevron-Type Actuators	21
16.	Magnetic actuators	Moving Coil Controllable Actuators, Moving Iron ControllableActuator	21
17.	Open and closed loop control system kit	Open and closed loop system kit should be able to measure theoutput response using CRO	22
18.	First and second order control system	First and second order system with input and output terminalsprovision	23,24
19.	Process control system with feed forward path kit	Process control system with feed forward path kit with input and output terminals provision	22
20.	PID Controller Test Bench	PID Controller Test Bench is a complete setup to control process through two-point (on/off) and three-point (PID) controllers. Industrial PID controller with RS485 communication facility, Thermocouple temperature sensor, Float switch for detection of water level, Temperature measurement and control, User friendly software, USB Interface, Heavy duty Test bench, Electrical control panel, Leak proof sturdy piping and tanks, SS Sump tank for inlet and outlet of water, Enhanced electricalsafety considerations, Caster wheel (with locking mechanism) at the legs of Testbench for easy movement.	25,26

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
1.	Introduction to Programmable Logic Controllers	Dunning, G.	Thomson /Delmar learning, New Delhi, 2005,ISBN13: 9781401884260
2.	Programmable Logic Controllers	Petruzella, F.D.	McGraw Hill India, New Delhi, 2010, ISBN:9780071067386
3.	Programmable Logic Controllers	Hackworth, John; Hackworth, Federic	PHI Learning, New Delhi, 2003, ISBN:9780130607188
4.	Industrial automation and Process control	Stenerson Jon	PHI Learning, New Delhi, 2003, ISBN: 9780130618900
5.	Programmable Logic Controller	Jadhav, V. R.	Khanna publishers, New Delhi, 2017, ISBN: 9788174092281
6.	Programmable Logic Controllers and IndustrialAutomation - An introduction,	Mitra, Madhuchandra; Sengupta, Samarjit,	Penram International Publication, 2015,ISBN: 9788187972174
7.	Control System	Nagrath & Gopal	New Age International Pvt Ltd, ISBN:9789386070111, 9789386070111
8.	Linear Control Systems with MATLAB Applications, Publisher:	Manke, B. S.	Khanna Publishers, ISBN: 9788174093103,9788174093103
9.	Supervisory Control and Data Acquisition	Boyar, S. A.	ISA Publication, USA, ISBN: 978- 1936007097
10.	Practical SCADA for industry,	Bailey David; Wright Edwin	Newnes (an imprint of Elsevier), UK 2003,ISBN:0750658053

(b) Online Educational Resources:

- 1. Process Automation Control- online Tutorial: www.pacontrol.com
- 2. PLC product: www.seimens.com
- 3. www.ab.rockwellautomation.com
- 4. PLC product: www.abb.co.in
- 5. Different product of PLC and Peripherals, Smart Tile CPU Board, All in one lighting energycontroller, Classic PLC www.triplc.com
- 6. Simulation software:http://plc-training-rslogix-simulator.soft32.com/free-download/
- 7. Simulator :www.plcsimulator.net/
- 8. https://www.youtube.com/watch?v=y2eWdLk0-Ho&list=PLIn3BHg93SQ_X5rPjqP8gLLxQnNSMHuj-
- 9. https://www.youtube.com/watch?v=86CrhxgAKTw
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Lab Manuals

 A)
 Course Code
 : 2400504G(T2400504G/P2400504G/S2400504G)

 B)
 Course Title
 : Electric Vehicle (Basic)

 C)
 Prerequisite Course(s)
 :

:

D) Rationale

Fossil fuel consumption and its adverse impact on the environment have led most nations in the world to adopt electric vehicles for mobility. Most automobile companies are switching from internal combustion engines to electric, a cleaner, and more sustainable alternative. But, in the present scenario, the automobile industries are facing a shortage of skilled technicians needed for the transition to electric drives as the primary source of motive power. There is a huge skill gap between industry and academia when it comes to the task of taking the entire automobile industry towards electric mobility. Therefore, this basic course on an electric vehicle is included in the curriculum of the diploma programme as an open elective course to fill this gap and gain a basic understanding of the importance and necessity of electric vehicles. This course tends to enable participants with multidisciplinary exposure and give them a brief idea about electric vehicles, and their importance. This course gives some basic technical foundations regarding electric vehicles to help them move on to advanced electric vehicle courses.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of the following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the student will be able to-

- **CO-1** Classify the EVs based on configurations.
- **CO-2** Identify relevant Motors for the given EV application.
- **CO-3** Test the performance of batteries used for EV applications.
- **CO-4** Distinguish between the EV Charging stations based on their Configurations.
- **CO-5** Follow regulatory requirements and policies for EV Industry.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Outcomes (POs)							Programme Specific Outcomes* (PSOs)	
Outcomes (COs)	PO-1 Basic and Discipline- Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Developme ntof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	
CO-1	3	2	-	2	2	-	3			
CO-2	3	2	2	2	2	1	3			
CO-3	2	2	3	3	2	2	3			
CO-4	2	2	1	2	2	1	2			
CO-5	1	1	-	-	3	1	2			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

* PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

				Scheme of Study (Hours/Week)				
Course Code	CourseTitle	Classroom itle Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)	
		L	Т					
2400504G	Electric Vehicles (Basic)	03	-	04	02	09	06	

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			As	sessment So	cheme (Mar	ks)			
Course Code		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(ТА+ТWA+LA)	
	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (T	
2400504G	Electric Vehicles (Basic)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at the course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to the attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020-related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400504G

1	Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
TSO 1b. TSO 1c.	Identify the types of the vehicle based on the physical features, specification data and information. State the advantages of EVs over Conventional IC Engine Vehicles. Identify different components of Electric Vehicle systems Explain the functions of different components of the EV	Unit-1.0Introduction to Electric Vehicle Review of Conventional Vehicle Engine System Electric Vehicle (EV) • The necessity of Electric Vehicle • Types of Electric Vehicles • Plug-in hybrid • Battery electric vehicle • Hybrid electric vehicle • Fuel Cell Electric Vehicles Electric Vehicle Components: Motor, Motor Controller, Battery, Battery Management System, and ChargingSystem.	CO1
TSO 2a. TSO 2b. TSO 2c.	Explain the general characteristics of motorsused in EV List different types of motors used in EV Explain the working principles of motors used in	Unit-2.0 Electric Motors used in EVs Electric Motors for EV applications General Characteristics of motors	CO2
TSO 2d. TSO 2e.	EV applications Interpret the nameplate ratings of the motorsfor EV applications. Explain the motor selection criteria	 Types of Motors: DC, Brushless DC, Induction, Permanent Magnet Synchronous Motors, SwitchedReluctance 	
TSO 2f.	forparticular EV applications. Describe the Mechanical and ElectricalConnections of Motors.	Motors Rating of Motors Selection Criteria Physical Location Connection of Motors: Mechanical Connections and Electrical Connections	
TSO 3a.	List the batteries used in EVs for energy storage	Unit- 3.0 EV Batteries and Energy Storages	CO3
TSO 3b.	<i>c, c</i>	Types of Batteries: Lead Acid, Nickel Based,	
TSO 3c.	Explain the charging and discharging process of the given batteries.	Lithium Based Battery Parameters	
TSO 3d.	Explain the salient features of Lithium Ionbatteries	Charging (AC) and Discharging (DC) Process Lithium Ion Batteries	
TSO 3e.	Explain the Fuel Cell Storage System.	Fuel Cells, Fuel Cell Storage System	
TSO 3f.	Identify various sensors installed for	Battery Condition Monitoring	
TSO 3g.	monitoringBattery condition. Explain Battery Management System in EV	Battery Management System (BMS) Need of BMS 	
TSO 3h.	usingBlock Diagram. Describe the procedure of battery Disposal andRecycling	Block Diagram of BMS Battery Disposal and Recycling	

N	lajor Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
TSO 4a.	Identify different types of diodes and transistors.	Unit- 4.0 EV Charging Systems	CO4
TSO 4b.	Describe the testing procedure for the givenDiode and Transistor.	 Power electronics in EV Power electronics components 	
TSO 4c.	Explain the working principles of the givenpower electronic converter circuit.	 Rectifiers DC to DC Converter 	
TSO 4d.	Describe the types of Charging Systems	DC to AC Converter	
TSO 4e.	Describe different Components of the ChargingSystem	Charging System • Types of charging Systems	
TSO 4f.	Explain the working of the Charging Systemusing a single-line diagram.	 Components of Charging Systems Single line Diagram of Charging System 	
TSO 5a.	Understand the Rules and Regulations set by theGovernment for selecting and manufacturing various components of an	Unit- 5.0 Regulatory Requirements andPolicies for EV Industry	CO5
	electric vehicle.	Rules and Regulations set by the Indian	
TSO 5b.	Understand the Policies for E-Vehicles.	government for the	
TSO 5c.	Appreciate the importance of the reduction	designer/manufacturer of EVs.	
	ofgreenhouse gases in the environment.	Policies in India	
		Global Policies for E- Vehicles.	
		Carbon Footprint Issues	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504G

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)
LSO 1.1 Use the relevant digital meter for the given application. LSO 1.2 Use a measuring instrument for the given application. LSO 1.3 Use safety kits while working in the laboratory.	1.	 Practice using digital meters such as AC, DC Clamp Meters, Digital Multimeters, Lux Meters, etc. Practice using Screw Driver Kit, Vernier Caliper, Micrometer, Ampere Meter, Voltage Meter, and Techno-meter. Practice using safety kits. 	CO1
LSO 2.1 Identify the motors used in EV applications LSO 2.2 Identify the given motor terminals	2.	Identification of motors used in EVs	CO2
 LSO 3.1 Identify the batteries available in the laboratory. LSO 3.2 Measure an open circuit voltage of the given battery. LSO 3.3 Determine the Ampere -Hour Capacity of the given battery with a given load. LSO 3.4 Test the performance of the given battery with different charging rates and at different ambient temperatures LSO 3.5 Demonstrate the effect on the state of health of the battery after several charge/discharge cycles. LSO 3.6 Evaluate the temperature cut-off point for the given BMS. 	3.	 Testing of Batteries used in EVs Battery Management System 	CO3
LSO 4.1 Identify the Electrical & Electronics components available in the laboratory using Digital Multimeters. LSO 4.2 Test the given power electronic	4.	 Power electronic circuits Identification of Charging systems 	CO4

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)
components using digital meters			
LSO 4.3 Identify the given Power Electronic Circuits used in EVs			
LSO 4.4 Identify the components of the Charging System			
LSO 4.5 Recognize the types of Charging Systems available in the Laboratory			

- L) Suggested Term Work and Self-Learning: S2400504G Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Collect the information related to the performance of different types of electric vehicles and prepare acomparative report on economic and environmental analysis.
- 2. Collect specifications of different EVs available in the market.
- 3. Build and test a prototype circuit of converters used in an electric vehicle.
- 4. Visit a nearby Electric vehicle showroom or service centre & collect information on different types of motors used in electric vehicles and prepare a comparative report on their performance,
- 5. Visit a nearby charging station and prepare a report describing the layout and components of the charging station.

c. Other Activities:

1. Seminar Topics:

- Communication Systems, Sensors and batteries used in Evs.
- Technological advances in Evs
- Comparison of EVs manufactured by different companies.
- 2. **Surveys** Survey the market and gather information on the electric vehicle manufacturers and submit the report.
- 3. Product Development- Develop an electric vehicle prototype using locally procured hardware components.

d. Self-Learning Topics:

- Global Manufacturers of EV
- Indian Manufacturers of EV
- Motors used in EV
- Batteries used in EV
- Cost comparison of EVs in market

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use the appropriate assessment strategy and its weightage, in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be used to calculate CO attainment.

			C	ourse Evalu	ation Matrix				
	Theory Asses	sment (TA)**	Term Wo	rk Assessme	nt (TWA)	Lab Assessment (LA) [#]			
COs	ProgressiveEnd TheoryTheoryAssessmentAssessment(ETA)(PTA)Class/MidSem Test		Term Work & Self-Learning Assessment			Assessment Progre		Progressive Lab Assessment	End Laboratory Assessment
			Class/Mid Assignments		Other Activities*	(PLA)	(ELA)		
CO-1	20%	15%	20%		33%	10%	20%		
CO-2	20%	20%	20%		33%	15%	20%		
CO-3	20%	30%	20%		34%	15%	20%		
CO-4	20%	25%	20%	50%		30%	20%		
CO-5	20%	10%	20% 50%		30%	20%			
Total	30	70	20 20 10			20	30		
Marks				50					

Legend:

* : Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

** : Mentioned under point- (N)

: Mentioned under point- (O)

Note:

• The percentage given are approximate

• In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Introduction to Electric Vehicle	8	CO1	12	3	5	4
Unit-2.0 Electric Motors used in EVs.	10	CO2	14	4	5	5
Unit- 3.0 EV Batteries and Energy Storages.	14	CO3	20	5	7	7
Unit- 4.0 EV Charging Systems	10	CO4	15	5	6	4
Unit- 5.0 Regulatory Requirements and Policies for EV Industry	6	CO5	9	3	4	3
Total Marks	48		70	20	27	23

Note: Similar table can also be used to design class/mid-term/ internal question papers for progressive assessment.

		Relevant	PLA/ELA			
S.	Laboratory Practical Titles	COs	Perfo	rmance	Viva-	
No.		Number(s)	PRA* (%)	PDA** (%)	Voce (%)	
1	Practice using digital meters such as AC, DC Clamp Meters, DigitalMultimeters, Lux Meters, etc.					
2	Practice using Screw Driver Kit, Vernier Caliper, Micrometer, Ampere Meter, Voltage Meter, and Techno-meter.	CO1	90	-	10	
3	Practice using safety kits.					
4	Identification of motors used in EV	CO2	60	30	10	
5	Testing of Batteries used in EVs	CO3	60	30	10	
6	Battery Management System					
7	Power electronic circuits	CO4	30	60	10	
8	Identification of Charging systems					

O) Suggested Assessment Table for Laboratory (Practical):

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

- **Note:** This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to beprepared by the course teacher for each experiment/practical to assess the student performance.
- P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Labs, and Field, Information and Communications Technology (ICT)Based, Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	AC, DC Clamp Meters	Application: Non-contact AC/DC Voltage and Current measurement AC Application: Current: 0-200Amp, Voltage: 0-600Volt DC Application: Current: 4-20mA, Voltage: 0-30Volt.	1
2.	Digital Multimeters	Display: 4 ½ digit Indications: overload protection, polarity indication, over range indication. Auto range change and auto polarity change facility, auto display of polarity and decimal point. DC: Volt: 200mV-600V, Current: 200mA-2A AC: Volt: 200mV-1000V, Current: 200mA-2A Resistance: 200W-20mW, Power supply: 230V, 50Hz Battery operation: 9 Volt battery Electronic components testing facility should be provided	1, 3

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical
		in the Multimator	Number
		in the Multimeter. A provision for an A.C. adaptor(eliminator) must be available along with the multimeter.	
3.	Lux Meters	Functions: MAX / MIN, Backlight, Auto Power Off Range: 0 ~ 200,000 lux 0 ~ 20,000 fc	1
		Accuracy: ± 5% rdg + 10 dgt (< 10.000 lux / fc) ± 10% rdg + 10 dgt (>10.000 lux / fc)	
		Resolution: 0.1 lux or 0.1 fc	
		Accessories: Carrying Case, Installation Manual, 9V Battery (installed).	
4.	Screw Driver toolbox	All types of screw drive sets.	1
5.	Vernier Caliper	Range: Lower scale: 0-200mm, Upper Scale: 0-12inch Vernier Resolution:	1
		Lower Scale: 0.02mm, Upper Scale: 0.001inch	
6.	Micrometer	0-25mm (inside/outside)	1
7.	Ampere Meter	Moving iron and Moving Coil	1
8.	Voltmeter	AC(0-250V)/DC(0-24V)	1
9.	Tachometer	For speed measurement (0-3000rpm)	1
10.	Resistors	Low-value Resistors of different types	1,4
11.	Capacitors	Low-value electrolyte Capacitors.	1,4
12.	Inductors	Low-value inductors.	1,4
13.	Safety Kit	First Aid Kit, Helmet, Face Mask, Gloves etc.	1
14.	Motors for Electric Vehicleapplication	Brushless DC, Induction, Permanent Magnet Synchronous Motors, Switched Reluctance Motors	2
15.	EV Machine Cut-out section	for demonstration & training	2
16.	EV mock layout	for demonstration & training	2
17.	Lithium Ion Battery	12V, 7Ah	3
18.	Lead-acid battery	12V, 7Ah	3
19.	Nickel-based batteries (metal hydride and cadmium battery).	12V, 7Ah	3
20.	Battery internal resistance meter	For O.C. voltage & internal battery resistance of each cell	3
21.	Cell Capacity tester	Up to 15V batteries and 3A load current, 10mV voltage and 1mA current resolution,	3
		Automatic detection of termination voltage,	

S. No. Name of Equipment, Tools and Software		Broad Specifications	Relevant Experiment/Practical Number
		LED display with a 3-button interface.	
22.	BMS setup	For Demonstration & training	3
23.	DC power supply	0-32V	3
24.	Power diodes	Power diodes of different current values.	1, 4
25.	Transistors	Power Transistors (NPN, PNP) for Low-frequency high- power applications.	1,4
26.	Voltage Sensors	0-12 Volts.	1,3,4
27.	Current Sensors	Volts: + 15v, 0-5v, Current: 4-20mA.	1,3,4
28.	Converter Models	DC to DC and DA to AC converter model	4
29.	Charging Station Simulator	For Demonstration & training purposes.	4
30.	EV Technology layout 3D posterwith frame	Fuel cell, EV- Charging Systems, HEV, FCEV, Motors & Controllers etc.	3,4

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
1.	Handbook on Electric Vehicles Manufacturing (E-Car, Electric Bicycle, E- Scooter, E-Motorcycle, Electric Rickshaw, E- Bus, Electric Truck with Assembly Process, Machinery Equipment's &Layout)	P.K. Tripathi	Niir Project Consultancy Services; 1st edition (1 January 2022) ISBN-13: 978-8195676927
2.	Electric Vehicles: And the End of the ICE age	Anupam Singh	Kindle Edition ASIN: B07R3WFR28
3.	Wireless Power Transfer Technologies for Electric Vehicles (Key Technologies on New Energy Vehicles)	Xi Zhang, Chong Zhu, Haitao Song	Springer Verlag, Singapore; 1st ed. 2022 edition (23 January 2022) ISBN-13: 978-9811683473
4.	Modern Electric, Hybrid Electric, and Fuel Cell Vehicles	EHSANI	CRC Press; Third edition (1 January 2019) ISBN-13: 978-0367137465
5.	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles	John G. Hayes, G. Abas Goodarzi	Wiley; 1st edition (26 January 2018) ISBN-13: 978-1119063643
6.	New Perspectives on Electric Vehicles	Marian Găiceanu (Editor)	IntechOpen (30 March 2022) ISBN-13: 978-1839696145

(b) Online Educational Resources:

- 1. https://www.energy.gov/eere/fuelcells/fuel-cell-systems
- 2. https://powermin.gov.in/en/content/electric-vehicle
- 3. https://www.iea.org/reports/electric-vehicles
- 4. https://www.oercommons.org/search?f.search=Electric+Vehicles

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Lab Manuals

- A)Course Code: 2400504H(T2400504H/P2400504H/S2400504H)B)Course Title: Robotics (Basic)C)Pre- requisite Course(s):D)Rationale:
 - Currently, industries demand non-stop and fine quality work in different processes used. It is difficult for the human beings to give same quantity and quality of work with respect to time, environment and

the human beings to give same quantity and quality of work with respect to time, environment and complexity of the work in any process industry. To get quality and quantity of work in toughest environment or the environment which is not suitable for the humans to work, industries demand for robots and its operator. Operators who will operate these robots need some basic knowledge of robotics. To fulfill the need of industries and looking to the advancement in technology, this course aims for the diploma engineers to have knowledge and skills in robotics.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Select robots for given applications employing basic concepts of design and functions of robots.
- **CO-2** Interpret co-ordinate systems and degree of freedom for robots.
- **CO-3** Use sensors and drives in context of various robotic applications.
- **CO-4** Select appropriate robot control techniques,
- **CO-5** Use programs to operate robots.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	Analysis	PO-3 Design/Developmen t of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	-	3	-	2	2	2		
CO-2	3	2	1	2	-	-	-		
CO-3	3	2	1	2	2	-	2		
CO-4	3	1	1	2	-	-	-		
CO-5	3	2	3	3	2	3	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)						
Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)	
		L T						
2400504H	Robotics (Basics)	03	-	04	02	09	06	

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			А	ssessment S	cheme (Ma	rks)		
Course Code	o ==::1	Theory Assessment (TA)		Term Work & Self- Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)
Cour	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (T/
2400504H	Robotics (Basic)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400504H

Major Theory Session Outcomes (TSOs)			Units	Relevant COs Number
				(s)
TSO 1a.	Explain the basic terms used in robotics	Unit	-1.0 Basics of Robotics Systems	CO1, CO2
TSO 1b.	Identify components used in robots.			
TSO 1c.	Explain various types of movements.	1.1	Definition, need, brief history of robotics	
TSO 1d.	Distinguish various robots' configurations and their workspace.	1.2	Basic Robot terminology, configuration and its working	
TSO 1e.	Evaluate the degrees of freedom of the given robot.	1.3	Robot components overview - Manipulator, End effecters, Drive system,	
TSO 1f.	Specify the methods of conversion of the given linear motion into rotary motion and vice-versa.	1.4	Controller, Sensors Basic structure of a Robot and Classification – Cartesian, Cylindrical, Spherical, Herizontal articulated (SCAPA)	
TSO 1g.	List the criteria for selecting robot for the given simple application with justification.		Spherical, Horizontal articulated (SCARA), Parallel; Mechanic alarm, Degree of freedom, Links and joints, Wrist rotation, Mechanical transmission-pulleys, belts, gears, harmonic drive (gear box)	
		1.5	Linear and Rotary motion and its devices	
			Selection criteria for robots	
TSO 2a.	Explain the working of various types of End effecters used in robots with		- 2.0 Robot Components	CO3
TSO 2b.	diagram. Explain with sketches the function of the given sensing device used in a robot.	2.1 2.2	End effecters: types, sketches, working and applications Sensing and Feedback devices:	
TSO 2c.	Describe working of the given sensor used in robot.		Optical sensors, Proximity sensors, LVDT, Thermocouple,	
	Explain the given robot configuration. Select relevant robot sensors for a given application with justification.		RTD, Thermistor, Force sensing – strain gauge, Piezoelectric, Acoustic sensing Feedback	
TSO 2f.	Describe robot machine vision concepts along with block diagram of robot vision system.	2.2	devices; Potentiometers; Optical encoders; DC tachometers;	
TSO 2g.	Select vision equipment for a given robotic application.	2.3	Robot machine vision: Block diagram of robot vision system, Vision equipment- camera, Imaging Components: Point, Line, Planar and Volume Sensors, Image processing, Part recognition and range detection	
TSO 3a.	Explain with sketches the function of the specified actuator used in a robot.	Unit	- 3.0 Robotic Drive System and Controller	CO4
	Differentiate between open loop and closed loop systems.	3.1	Actuators; Hydraulic, Pneumatic and Electrical drives; linear actuator; Rotary	
	Explain various robotic controls.	2.2	drives	
	Describe block diagrams of the given control system. Specify drive system used for robotic control as per	3.2	Control systems: Open loop and close loop with applications and its elements, Servo and non-servo control systems –	

Major Theory Session Outcomes (TSOs)		Units		Relevant COs Number (s)
TSO 3f.	requirement. Differentiate the various robot path		Types, basic principles and block diagram Robot controller; Level of Controller	
	controls.	3.3	AC servo motor; DC servo motors and	
TSO 3g.	Justify the selection of actuators,		Stepper motors;	
	drives, control system, AC servo	3.4	Robot path control: Point to point,	
	motor and path control for making of		Continuous path control and Sensor	
	a robot.		based path control	
TSO 4a.	Explain various robot programming languages.	Unit-	- 4.0 Introduction to Robot Programming	CO5
TSO 4b.	Programme robot for a given simple job.	4.1	Need and functions of programming	
	Describe the procedure to simulate the	4.2	Methods of robot programming: Manual	
	given robot movements using the relevant		Teaching, Teach Pendant, Lead through,	
	software.		Programming languages. Programming	
			with graphics.	
		4.3	Programming languages: Types, features	
			and applications	
		4.4	Controller programming	
		4.5	Simulation for robot movement	
TSO 5a.	Select a robot for the given application.	Unit-	- 5.0 Robotics Applications and	CO1, CO2,
TSO 5b.	Describe various applications of Robotics.		Maintenance aspects	CO3, CO4
TSO 5c.	Explain safety norms in robot handling.			
TSO 5d.	Describe maintenance procedure for the	5.1	Application robots including	
	given robot.		special types	
TSO 5e.	Describe common problems in robot	5.2	Robot maintenance: Need and types	
	operations and suggest remedial action.	5.3	Common troubles and remedies	
			in robot operation.	
		5.4	General safety norms, aspects	
			and precautions in robot handling	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504H

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)
LSO 1.1 Identify parts of Robot on the basis of function. LSO 1.2 Identify joint type & link parameters (link length, link twist, and Link offset), rotational vs. linear motion, used in robot.	1.	Identify components and different configurations of robots.	CO1
LSO 2.1Identify different types of robot end effecters. LSO 2.2 Use Mechanical grippers to hold objects. LSO 2.3 Use Vacuum grippers to hold objects.	2.	Pick/hold different objects (shape/weight/stiffness) using robot end effecters.	CO1, CO2
LSOs 3.1 Assemble the complete robot using the components as per the procedure LSO 3.2 Apply the functionalities available in rotor trainer kit. LSO 3.3 Test for various configurations. LSO 3.4 Test for various degrees of freedom.	3.	Assemble robot to test various configurations and degrees of freedom using robot trainer kit.	CO1, CO2
LSO 4.1 Identify various types of sensors used in robotic application. LSO 4.2 Measure angular motion using Synchros. LSO 4.3 Detect objects using optical sensors.	4.	Use different types of robotic sensors for a specific situation.	CO3

Practical/Lab Session Outcomes (LSOs)		Laboratory Experiment/Practical Titles	Relevant COs Number (s)
LSO 5.1 Interface stepper motor. LSO 5.2 Control robot with stepper motor	5.	Perform robot control with stepper motor interfacing	CO3
interfacing.			
 LSO 6.1 Draw the labelled sketch of individual parts and robot arm. LSO 6.2 Assemble the arm using the parts as per the procedure. LSO 6.3 Interface the motor drive and operate. 	6.	Assemble robot arms using mechanical transmission components and interface motor drive.	CO2, CO3
LSO 7.1 Use open source or available relevant software to develop pick and place programme. LSO 7.2 Perform simulation.	7.	Perform pick and place operation using Simulation Control Software.	CO5
LSO 8.1 Develop programme for using a robot arm with three degrees of freedom. LSO 8.2 Execute the programme.	8.	Perform 2D simulation of a 3 DOF robot arm.	CO2, CO4, CO5
LSO 9.1 Apply stepper motor control with direction control and step control logic simulation. LSO 9.2 Perform basic PLC programming LSO 9.3 Develop ladder logic programs LSO 9.4 Use programming timers	9.	Programme 5-axis Robotic arm to control various motions.	CO3, CO4, CO5
LSO 10.1Develop a program for a simple application. LSO 10.2 Execute the robot programme.	10.	Program to execute a simple robot application (like painting, straight welding) using a given configuration.	CO4, CO5

- L) Suggested Term Work and Self Learning: S2400504H Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - **b. Micro Projects:** A suggestive list of micro-projects is given here. Similar micro-projects that match the COs could be added by the concerned course teacher. The student should strive to identify eco-friendly or recycled material prior to selection for robotic applications.
 - 1. Develop stair climb robot using robotic components.
 - 2. Develop RF controller robot using robotic components.
 - 3. Develop robot for metal detection application using robotic components.
 - 4. Develop line follower robot using robotic components.
 - 5. Develop solar floor cleaner robot using robotic components.
 - 6. Develop solar tracker system using robotic components.
 - 7. Develop a greenhouse managing robot for a horticulture application.

c. Other Activities:

- 1. Seminar Topics: Recent developments in the field of robotics
- 2. Visits: Visit an automation industry and prepare report for various types of robots employed there and details of any one type of special purpose robot used
- 3. Case Study: Identify a robotic application in automobiles and present a case study
- 4. Self-Learning Topics:
 - History of industrial robot
 - Sociological consequences of Robots

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix									
	Theory Asses	sment (TA)**	Term We	ork Assessn	nent (TWA)	Lab Assess	ment (LA) [#]			
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term V	Work & Self Assessmei	0	Progressive Lab Assessment	End Laboratory Assessment			
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)			
	Sem Test			Projects	Activities*					
CO-1	25%	29%	20%	10%	25%	10%	20%			
CO-2	20 %	23%	20%	10%	25%	20%	20%			
CO-3	20%	17%	20%	25%	25%	20%	20%			
CO-4	20%	14%	20%	15%	25%	20%	20%			
CO-5	15%	17%	20% 40%			30%	20%			
Total	30	70	20 20 10			20	30			
Marks				50		1				

Legend:

• Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

** : Mentioned under point- (N)

: Mentioned under point-(O)

Note:

• The percentage given are approximate

- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.
- N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Number and Title	Total	Relevant	Total	ETA (Marks)		
	Classroom Instruction (CI) Hours	Cos Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Basics of Robotics Systems	10	CO1, CO2	20	7	8	5
Unit– 2.0 Robot Components	12	CO2, CO3	16	3	9	4
Unit– 3.0 Robotic Drive System and Controller	10	CO3, CO4	12	4	4	4
Unit– 4.0 Introduction to Robot Programming	8	CO5	10	2	5	3
Unit– 5.0 Robotics Applications and Maintenance aspects	8	CO1, CO2, CO3, CO4	12	4	4	4
Total Marks	48		70	20	30	20

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant COs	PLA/ELA			
S.	Laboratory Practical Titles	Number	Perfo	Viva-		
No.		(s)	PRA*	PDA**	Voce	
		(3)	(%)	(%)	(%)	
1.	Identify components and different configurations of robots.	CO1	30	60	10	
2.	Pick/hold different objects (shape/weight/stiffness) using robot end effecters.	CO1, CO2	60	30	10	
3.	Assemble robot to test various configurations and degrees of freedom using robot trainer kit.	CO1, CO2	70	20	10	
4.	Use different types of robotic sensors for a specific situation.	CO3	60	30	10	
5.	Perform robot control with stepper motor interfacing	CO3	70	20	10	
6.	Assemble robot arms using mechanical transmission components and interface motor drive.	CO2, CO3	60	30	10	
7.	Perform pick and place operation using Simulation Control Software.	CO5	70	20	10	
8.	Perform 2D simulation of a 3 DOF robot arm.	CO2, CO4, CO5	60	30	10	
9.	Programme 5-axis Robotic arm to control various motions.	CO3, CO4, CO5	60	30	10	
10.	Program to execute a simple robot application (like painting, straight welding) using a given configuration.	CO4, CO5	60	30	10	

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

- **Note:** This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.
- P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment,	Broad Specifications	Relevant
	Tools and Software		Experiment/
			Practical Number
1.	Programmable Robot trainer	Trainer kit with - Minimum 3 linkages, Minimum 4	1,2,3
	kit	degree of freedom, Mechanical end effecter with	
		servo control, interfacing card (RC servo output,	
		sensors input)	
2.	Robotic Arm Control Trainer	Robotic Arm with five axis control application	8,9
	Kit	through PLC.; PLC; Digital Inputs: 8 Nos with 4mm	
		banana sockets for getting the external inputs; Digital	
		Outputs: 6 Nos with 4mm banana sockets for	
		applying the inputs; Digital Input Controls: On board	
		Toggle switches, Push Buttons & input	
		potentiometers; Digital Outputs Controls: 6 nos. on	

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/ Practical Number
		board LED indicators; PC interfacing facility through RS-232.	
3.	Proximity trainer kit	Indicator Type:LED; PCB Type Glass Epoxy SMOBC PCB; Interconnections: 2mm banana Patch cords; On board DC motor to see the application of Proximity sensor. Test points to analyse the signal On board variable supply to vary the speed of DC motor. ON/OFF switch and LED for power indication. All interconnections to be made using 2mm banana Patch cords. User manual and patch cords. Built-in power supply. Robust enclosure wooden/plastic box.	4
4.	Robot - Line Tracking Mouse K	Product Dimensions (20.3 x 11.4 x 8.9 cm); programmed IC, 2 unassembled gear motors, printed circuit boards, mouse-shaped plastic body, necessary components and wires, step-down power converter	3, 4,5
5.	Intelligent Robot Actuator Module	Integrity Serial Bus System, CAN to Build Intelligent Device Network, Open Hardware Platform, Arduino, to control Robot sub-Systems of motor-sensor, movable Omni Wheel of Omni-Directional, Actuator operation control by DC Encoder Motor, DC-Motor control and operation by Accelerometer, Gyro, Ultrasonic and PSD sensor, Androx Studio; brushless ILM 70×10 Robo Drive DC motor; sensor-actuator units of ARMAR-4; SD-25-160-2A-GR-BB Harmonic Drive reduction gear unit high gear ratio of 160: 1; structural parts (white) are made out of high- strength aluminium, Hollow shaft with strain gauges for torque sensing, motor's magnetic incremental encoder (AMS5306), digital buses (SPI or 12C); Motor interface PCB includes a 13-Bit temperature-to- digital converter with a temperature range from -40°C to 125°C (Analog Devices ADT7302)	3, 4, 5
6.	6-axis Robotics Trainer	Programmable robotic arm with an interactive front panel. Software to demonstrates functioning of the trainer as well as allows a user to develop their own programs. NV330; 8 bit microcontroller to ARM processors; Record and Play capability; Optional interfacing with PL C ; Touch operated ON/OFF switch; Auto set to home position; Applications can be developed; Data acquisition using USB	3, 4, 5
7.	Robotic Drive System	AC servo motor; DC servo motors, Stepper motors; DC tachometers, etc.	1,3,5,6,7,10
8.	Robot simulator for Robotics	Educational networking licensed Robotic system with simulation software	8, 10
9.	Assorted sensors	Optical encoders, Acoustic sensors ,IR, Potentiometer, RTD, Thermistor, strain gauge, piezoelectric, etc	4
10.	Vision equipment	Camera, Imaging Components: Point, Line, Planar and Volume Sensors	1, 4,10

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
1.	Introduction to Robotics Mechanics and	John Craig	Pearson Education;
	Control		978-9356062191
2.	Industrial Robotics -Technology,	Nicholas Odrey Mitchell Weiss,	McGraw Hill Education;
	Programming and Applications	Mikell Groover Roger Nagel, Ashish Dutta	2nd Edition; 978 -1259006210
3.	Robotic engineering: an integrated	Richard D. Klafter, Thomas A.	Prentice Hall of India,
	approach	Thomas A. Chmielewski, Michael Negin	N.Delhi , 978-8120308428
4.	Industrial Robotics Technology,	Mikell P. Groover, Mitchell	McGraw-Hill Education,
	Programming and Applications	Weiss, Roger N. Nagel, Nicholas G. Odrey	Second Edition, 978-1259006210
5.	Robotics	Appuu Kuttan K. K.	Dreamtech Press, First Edition, 2020, 978-9389583281
6.	Introduction to Robotics: Analysis, Control, Applications	Saeed B. Niku	Wiley; Second Edition, 978-8126533121
7.	Essentials of Robotics Process Automation	S. Muhkerjee	Khanna Publication, First edition, 978-9386173751
8.	Robotics	R R Ghorpade, M M Bhoomkar	Nirali Prakashan 978-9388897020

(b) Online Educational Resources:

- 1. https://archive.nptel.ac.in/courses/112/105/112105249/
- 2. https://openlearning.mit.edu/mit-faculty/residential-digital-innovations/task-centered-learning-intro-eecs-robotics
- 3. http://www.mtabindia.com/
- 4. http://www.robotics.org/
- 5. https://en.wikipedia.org/wiki/Industrial_robot
- 6. http://www.servodatabase.com
- 7. https://www.youtube.com/watch?v=fH4VwTgfyrQ
- 8. https://www.youtube.com/watch?v=aW_BM_S0z4k
- 9. https://uk.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/robotic-parts-guide
- 10. https://www.automate.org/industry-insights/smarter-robot-grasping-with-sensorssoftware-the-cloud
- 11. https://www.iqsdirectory.com/articles/machine-vision-system.html

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

1. Learning Packages

- https://www.edx.org/learn/robotics
- https://www.coursera.org/courses?query=robotics
- https://www.udemy.com/topic/robotics/
- https://library.e.abb.com/public/9a0dacfdec8aa03dc12578ca003bfd2a/Learn%20with%20ABB.
 %20Robotic%20package%20for%20education.pdf
- 2. Users' Guide
 - https://roboindia.com/store/DIY-do-it-your-self-educational-kits-robotics-embedded-systemelectronics
 - https://www.robomart.com/diy-robotic-kits
 - https://www.scientechworld.com/robotics

3. Lab Manuals

- http://www-cvr.ai.uiuc.edu/Teaching/ece470/docs/ROS_LabManual.pdf
- https://www.jnec.org/labmanuals/mech/be/sem1/Final%20Year%20B.Tech-ROBOTICS%20LAB%20%20MANUAL.pdf

A)	Course Code	: 2400505(P2400505/S2400505)
B)	Course Title	: Entrepreneurship Development & Start-ups
		(Common for all Programmes)
C)	Pre-requisite Course (s)	:
D)	Rationale	:

A fast-growing economy provides ample opportunities for diploma engineers to succeed in entrepreneurship and start-ups. Start-up ecosystem and Entrepreneurship Development skills are fully developed providing many opportunities to the youths. Diploma engineers can be their own masters and provide jobs to others by starting their service-industry / assembly/marketing/consultancy/manufacturing enterprises. Entrepreneurship requires a distinct set of skills that will be developed in this course. This course aims at developing competencies in the diploma engineer for becoming an intrapreneur, a successful entrepreneur, or a startup Co-Founder. After successfully completing this course students who develop the qualities of a successful entrepreneur can establish their own manufacturing industry/business startup or be self-employed. Those who prefer jobs can become intrapreneurs and share profits with their company.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of the following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor, and Affective) in the classroom/laboratory/workshop/field/industry.

After completion of the course, the students will be able to-

- **CO-1** Demonstrate traits of a successful intrapreneur/ entrepreneur/ start-up co-founder.
- **CO-2** Innovate products and services using creativity and innovation techniques.
- **CO-3** Manage critical resources from support institutions.
- **CO-4** Prepare sustainable small business plans.

F) Suggested Course Articulation Matrix (CAM):

Course	Programme Outcomes (POs)								ne Specific omes* Os)
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	-	PO-7 Life Long Learning		PSO-2
CO-1	3	-	-	-	2	3	2		
CO-2	3	2	3	-	2	3	2		
CO-3	3	3	3	-	2	3	2		
CO-4	3	3	-	-	2	3	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)								
Course Code	Course Title	Instru	ClassroomLabNotionalTotalInstructionInstructionHoursHours(CI)(LI)(TW+ SL)(CI+LI+TW+SL)		Total Credits (C)					
		L	Т							
2400505	Entrepreneurship Development & Startups	-	-	04	02	06	03			

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			Α	ssessment	Scheme (M	arks)		
ode	T)		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)	
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)
2400505	Entrepreneurship Development & Startups	-	-	20	30	2 0	3 0	100

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: (Not Applicable)

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: T2400505

Practical/Lab Session Outcomes (LSOs)		S. No.	Laboratory Experiment / Practical Titles	Relevant Cos Number(s)
LSO1.1	Identify the skills of a Successful Entrepreneur.	1.	Profile summary (about 500 words) of a successful entrepreneur indicating milestone achievements.	CO1
LSO1.2	Determine the charms of entrepreneurship and start-ups	2.	Discussion session with your institute's pass- out students who are successful entrepreneurs.	C01
LSO1.3	Perform strength, weakness, opportunity, and threat analysis.	3.	SWOT analysis to arrive at your business idea of a product/service.	C01
LSO1.4	Develop sales & marketing skills	4.	Sale of products to different customers	C01
LSO2.1	Use creativity and put up a stall in a funfair and write a report of profit/loss.	5.	Creativity and Innovation in Business	CO2
LSO2.2	Innovate a point of sale for a product.	6.	Exhibition cum sale of products prepared out of waste.	CO2
LSO2.3	Generate different business opportunities.	7.	Business ideas (product/service) for intrapreneurial and entrepreneurial opportunities through brainstorming.	CO2
LSO1.5	Discover entrepreneurial potential.	8.	Self–assessment test to discover entrepreneurial traits.	CO1
LSO2.4	Classify domain-specific industries on business parameters.	9.	Survey industries (your stream), and grade them according to the level of scale of production, investment, turnover, and pollution to prepare a report on it.	CO2
LSO3.1	Identify entrepreneurship support institutions beneficial for the enterprise.	10.	Compile the information from the government agencies that will help you set up your business enterprise.	CO3
LSO3.2	Select a suitable funding scheme for the enterprise.	11.	Visit a bank / financial institution to enquire about various funding schemes for small-scale enterprises.	CO3
LSO3.3	Analyze the assessment procedure of bank loans.	12.	Collect loan application forms of nationalized banks / other financial institutions.	CO3
LSO3.4	Compute the financial needs of the business enterprise	13.	Compile the information from financial agencies that will help you set up your business enterprise.	CO3
LSO2.5	Select a business opportunity.	14.	Identify the business opportunity suitable for you.	CO2
LSO3.5	Carry-out market survey for a product.	15.	Market Survey for an Enterprise	CO3

Practical	/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment / Practical Titles	Relevant Cos Number(s)	
LSO4.1	Find out rates of industrial lands and buildings in different industrial areas.	16.	Industrial land and building for Entrepreneurship.	CO4	
LSO4.2	Craft a vision statement and enabling mission statements for your chosen enterprise.	17.	Vision statement and mission statement for a Startup.	CO4	
LSO4.3	Select a suitable name and brand for the business enterprise.	18.	Branding for a product and a Company.	CO4	
LSO4.4	SO4.4 Design a logo, letterhead, and visiting card for the business.		Marketing communication for business.	CO4	
LSO4.5	Prepare a techno-feasibility report	20.	A techno-feasibility report of a chosen product/service.	CO4	
LSO4.6	Prepare a business plan for the enterprise.	21.	Business plan for the enterprise.	CO4	
LSO4.7	Develop a website for the business	22.	Online Marketing for Business.	CO4	
LSO3.6	Prepare a set of short-term, medium, and long-term goals for starting a chosen small-scale enterprise.	23.	Goal setting for an enterprise.	CO3	
LSO3.7	Prepare an advertising campaign for your chosen product/service.	24.	Marketing management for an enterprise.	CO3	
LSO3.8	Establish a supply chain network for the enterprise.	25.	Supply Chain Management	CO3	
LSO3.9	Establish a Market intelligence mechanism.	26.	Market Intelligence for Entrepreneurship	CO3	
LSO4.8	Compile information about various insurance schemes covering different risk factors.	27.	Risks in business	CO4	
LSO4.9	Calculate the breakeven point for the business idea chosen by you.	28.	Breakeven point for a business	CO4	

- L) Suggested Term Work and Self-Learning: S2400505 Some sample suggested assignments, micro-projects, and other activities are mentioned here for reference.
 - a. **Assignments**: Questions/ Problems/ Numerical/ Exercises to be provided by the course teacher inline with the targeted COs.
 - i. Prepare a list of successful Entrepreneurs in the city.
 - ii. Prepare a list of startups in the city.
 - iii. Prepare a list of the nearest incubators.
 - iv. Prepare a list of Angel Investors and Venture Capitalists.
 - i. Choose any product and study its supply chain.
 - ii. Arrange brainstorming sessions for improvement of any product.
 - iii. Choose any advertisement and analyse its good and bad points.
 - iv. Visit industrial exhibitions, trade fairs and observe nitty-gritty of business.
 - v. Study schemes for entrepreneurship promotion of any bank.

b. Micro Projects:

- i. Interview successful entrepreneurs and startup co-founders in the city and innovate their products/services, pricing, packaging, advertisements, propositions, etc.
- ii. Identify different entrepreneurship support institutions in the city.
- iii. Prepare a collage for specific entrepreneurship development institutions.
- iv. Conduct a market survey for a specific product idea.

c. Other Activities:

- 1. Seminar Topics:
 - Charms of entrepreneurship.
 - Challenges of entrepreneurship.
 - Startup ecosystem in India.
 - One district one product scheme
 - Setting up of a business.
 - Market study of specified business.
 - Prepare a business plan for your chosen small scale enterprise.
 - Business opportunity suitable for you.
- Visits: Visit DIC, MSME, NSIC, NABARD, KVIC, IDBI, SBI, State Consultancy Organization, Industrial Development Center, Trade Exhibitions, Export Fairs, Trade Shows, etc. Visit nearby tool room/industry and learn to prepare budget of that industry. Also learn to grow low scale business and marketing. Prepare list of advertisement to grow business.

3. Self-Learning Topics:

- Achievement Motivation.
- Need for achievement.
- Calculated risk.
- CSR (Corporate Social Responsibility)
- MSME Development Institute.
- Marketing their business.
- Growing their business.
- Financial management.
- Dealing with the pressure and stress
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			C	ourse Evalua	ation Matrix			
	Theory Asses	sment (TA)**	Term W	ork Assessn	nent (TWA)	Lab Assessment (LA) [#]		
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Work	& Self Learn	ing Assessment	Progressive Lab Assessment	End Laboratory Assessment	
	Class/Mid		Assignments	Micro	Other Activities*	(PLA)	(ELA)	
	Sem Test			Projects				
CO-1	15%	15%	15%	-	-	20%	20%	
CO-2	10%	10%	10%	25%	-	10%	20%	
CO-3	15%	15%	15%	25%	33%	15%	20%	
CO-4	30%	30%	30%	25%	33%	15%	20%	
Total	30	70	20	20	10	20	30	
Marks				50	1			

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

• The percentage given are approximate

- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: (NOT APPLICABLE)

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant Cos		PLA/ELA	
S.	Laboratory Practical Titles	Number	Perfor	mance	Viva-
No.		(s)	PRA*	PDA**	Voce
			(%)	(%)	(%)
1.	Profile summary (about 500 words) of a successful entrepreneur indicating milestone achievements.	CO1	50	40	10
2.	Discussion session with your institute's pass-out students who are successful entrepreneurs.	CO1	50	40	10
3.	SWOT analysis to arrive at your business idea of a product/service.	CO1	50	40	10
4.	Sale of products to different customers	CO1	50	40	10
5.	Creativity and Innovation in Business	CO2	50	40	10
6.	Exhibition cum sale of products prepared out of waste.	CO2	50	40	10
7.	Business ideas (product/service) for intrapreneurial and entrepreneurial opportunities through brainstorming.	CO2	50	40	10
8.	Self-assessment test to discover entrepreneurial traits.	CO1	50	40	10
9.	Survey industries (your stream), and grade them according to the level of scale of production, investment, turnover, and pollution to prepare a report on it.	CO2	50	40	10
10.	Compile the information from the government agencies that will help you set up your business enterprise.	CO3	50	40	10
11.	Visit a bank / financial institution to enquire about various funding schemes for small-scale enterprises.	CO3	50	40	10
12.	Collect loan application forms of nationalized banks / other financial institutions.	CO3	50	40	10
13.	Compile the information from financial agencies that will help you set up your business enterprise.	CO3	50	40	10
14.	Identify the business opportunity suitable for you.	CO2	50	40	10
15.	Market Survey for an Enterprise	CO3	50	40	10
16.	Industrial land and building for Entrepreneurship.	CO4	50	40	10
17.	Vision statement and mission statement for a Startup.	CO4	50	40	10

		Relevant Cos	PLA/ELA			
s.	Laboratory Practical Titles	Number	Perfor	mance	Viva-	
No.		(s)	PRA*	PDA**	Voce	
140.			(%)	(%)	(%)	
18.	Branding for a product and a Company.	CO4	50	40	10	
19.	Marketing communication for business.	CO4	50	40	10	
20.	A techno-feasibility report of a chosen product/service.	CO4	50	40	10	
21.	Business plan for the enterprise.	CO4	50	40	10	
22.	Online Marketing for Business.	CO4	50	40	10	
23.	Goal setting for an enterprise.	CO3	50	40	10	
24.	Marketing management for an enterprise.	CO3	50	40	10	
25.	Supply Chain Management	CO3	50	40	10	
26.	Market Intelligence for Entrepreneurship	CO3	50	40	10	
27.	Risks in business	CO4	50	40	10	
28.	Breakeven point for a business	CO4	50	40	10	

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

- **Note:** This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.
- P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software: (Not Applicable)

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Entrepreneurial Development	Khanka S.S. (2006)	S. Chand Publishing, 20068121918014,
2.	Un-Boxing Entrepreneurship Your self-help guide to setup a successful business	Dr. Nishith Dubey Aditya Vyas, AnnuSoman, AnupamSingh, CharulChaturvedi, Praveen Shukla	Indra Publishing House, 2023, ISBN-978-93-93577-70-2
3.	Skill Development and Entrepreneurship in India	Rameshwari Pandya	Ingram 2016, 8177084186

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
4.	Production and Operations Management	SV Deshmukh, A K Chitale and Nishith Rajaram Dubey,	Archers & Elevators Publishing House, Bangalore ISBN 9789386501197
5.	Entrepreneurship Development	Sapna Jarial	New India Publishing Agency- Nipa 2022, 9395319240
6.	The Entrepreneurial Instinct: How Everyone Has the Innate Ability to Start a Successful Small Business	Monica Mehta	Tata McGraw Hill Education, New Delhi, 2012, ISBN 978-0-07-179742- 9
7.	The Learn Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses	Eric Ries	Penguin UK ISBN-978- 0670921607
8.	Entrepreneurship and Start-ups	Ekta Sharma	FPH
9.	The Innovator's Dilemma: The Revolutionary Book That Will Change the Way You Do Business	Clayton M. Christensen	Harvard business ISBN: 978- 142219602

Online Educational Resources:

- 1. Coir Board http://coirboard.gov.in/
- 2. National Institute for Micro, Small and Medium Enterprises (ni-msme) https://www.nimsme.org/
- 3. MSME / Udyam Registration https://udyamregistration.gov.in/Government-India/Ministry-MSMEregistration.htm
- 4. CHAMPIONS https://champions.gov.in/Government-India/Ministry-MSME-Portalhandholding/msme-problem-complaint-welcome.htm
- 5. Prime Minister Employment Generation Programme and Other Credit Support Schemes https://msme.gov.in/prime-minister-employment-generation-programme-and-other-credit-supportschemes
- 6. Marketing Promotion Schemes https://msme.gov.in/marketing-promotion-schemes
- 7. Start-up India https://www.startupindia.gov.in/
- 8. DPIIT Recognition https://www.startupindia.gov.in/content/sih/en/startup-scheme.html
- 9. Startup India Seed Fund Scheme https://seedfund.startupindia.gov.in/
- 10. STARTUP INDIA INVESTOR CONNECT https://investorconnect.startupindia.gov.in/
- 11. Startup Funding https://www.startupindia.gov.in/content/sih/en/funding.html
- 12. Women Entrepreneurship in India https://www.startupindia.gov.in/content/sih/en/women_entrepreneurs.html
- 13. Incubators https://www.startupindia.gov.in/content/sih/en/incubator-framework.html
- 14. Start-up Mentors https://www.startupindia.gov.in/content/sih/en/search.html?roles=Mentor&page=0
- 15. NEN https://nen.org/
- 16. TIE https://tie.org/
- 17. MoE Innovation Cell https://www.mic.gov.in/
- 18. https://youtu.be/8iKsZZYv90k
- 19. https://youtu.be/Tzzfd6168jk
- 20. https://youtu.be/9-O15gDqebg
- Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students
- (b) Others: -

- A) Course Code
- : 2425506(P2425506/S2425506)

: Summer Internship -II / Industrial training

C) Pre- requisite Course(s)

Course Title

D) Rationale

B)

With the advancement in technology and skill requirements of industry 4.0, we need to prepare our young Indian technical talent to meet the present demand. Our diploma pass outs are either supposed to work as supervisor in the industries or start their own enterprise, hence upon the completion of diploma programme, they need to be adequately equipped with knowledge, skills and attitude required by the world of work in their relevant field. To attain this, students need to be sent for internship, industrial visit and industrial training during the course of study. One or two mandatory internships are placed in the programme structure to equip the students with practical knowledge, problem solving attitude and also provide the exposure to real time industrial environments. It also helps the students to understand the industrial requirements, develop expertise through hands on experience and take up project work relevant to industry. With these provisions of industrial exposures relevant practical and professional skills are developed in the students and as a result they are readily employed and widely accepted by industries, even sometimes during such trainings itself. In the context of above after having gone through the summer internship-I (after the second semester), the summer internship-II/ industrial training is planned after the completion of fourth semester.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Develop the comprehensive view of industry 4.0 elements and 21st century skills requirements in the relevant diploma engineering programme through Summer Internship-II.
- **CO-2** Outline the importance of industrial training and Internship for gaining direct practical skills on their relevant domain area of industrial equipment, automation, machinery, processes, product, management, operations, software development etc.
- **CO-3** Use the knowledge and skills gained during industrial training or world of work.

Course Outcomes (COs)		Programme Outcomes(POs)									
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2		
CO-1	2	-	-	3	-	2	1				
CO-2	-	-	-	3	-	2	1				
CO-3	3	2	2	3	-	2	1				

F) Suggested Course Articulation Matrix (CAM):

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course Title	Scheme of Study (Hours/Week)							
Course Code		Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	Т						
2425506	Summer Internship - II	-	-	02	04	06	03		

Legend:

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			As	sessment So	cheme (Mar	ks)			
Course Code		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)	
	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+T	
2425506	Summer Internship - II	-	-	20	30	20	30	100	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

I) Guidelines to Teachers for Implementation & Assessment of Industrial Internship/Training:

1. Rationale:

During implementation of the curriculum, industrial exposure in the form of industrial internship/training is very important for developing and reinforcing many concepts and principles and also to get exposure of industrial environment, working culture, latest developments in relevant field, layout, management, culture, hierarchy, discipline, safety norms, different department/sections, quality control/assurance in processes, services and products, demonstration and operation of specific equipment/machinery, rules and procedures and many other aspects of the industries, where diploma holders are going to work. Students also get exposed to the different kinds of problems which can be brought into the institutional laboratories or workshop. Organizing industrial training of students is essentially required to enhance the prospects of employability, after undergoing industrial training, students get the direct exposure to the world of work in their relevant field. They get hands on experience in the industries.

Planning before Industrial internship/training is essentially required to be done for effective implementation of the same.

2. Planning for industrial internship/training:

Following points need to be planned and briefed by the teachers to the students before proceeding for industrial training. Student should take into consideration these points and carry the relevant format/data/log book with them.

- Analyze curriculum analysis and identify curricular gaps and topics which need industrial intervention;
- Objectives /Purposes of the industrial internship/training
- Outcomes targeted before proceeding to industrial internship/training.
- Pre-requisite knowledge or skills required to be developed in the students in the form of demonstration or classroom sessions.
- Identification and planning for demonstration of any equipment or experiments, concepts, under the content beyond syllabus.
- Preparation of database of nearby relevant industries.
- Good rapport needs to be developed and maintained with the industries by the teachers, so that the students are ultimately benefitted by the industrial internship/training.
- Industrial policy of the state also needs to be taken care of while planning of industrial training
- For assessing the students on various dimensions of industrial internship/training, assessment rubric may be prepared by the implementing teachers in advance.
- Make arrangements for student insurance during the industry internship/training
- Prepare instructions to be followed by students in the industries.
- Following formats need to be developed by the teachers and briefed to the students before proceeding to industrial internship/training
 - Formats of observations on layout, ambience, and work culture to be developed, and briefed to the students.
 - Formats of outcome attainment, related to observation on relevant technical area also need to be developed by the teachers and briefed to the students.
 - Formats and contents of report writing and presentation.
 - Formats and contents on assessment of industrial training.
 - Continuous observation formats on many points such as behavioral aspects related to soft skills development such as initiativeness, observation, notes taking skills, inquisitiveness, obedience, sincerity, follow the instructions, positive attitude and many other aspects.

Formats of Assessment Rubric on different parameters of both behavioral aspects and technical aspects of the programme.

3. Major outcomes expected to be attained and assessed:

Outcomes expected from the industrial internship/training should be clearly defined and briefed to the students. Evaluation criteria for assessing students, need to be prepared for different outcomes set, during the planning stage. The list of major outcomes expected to be attained are –

- Development and reinforcement of Basic knowledge
- Development and reinforcement of Engineering knowledge through reinforcement of concepts or principles.
- Gaining Engineering Knowledge i.e operations, performance, maintenance, demonstrations of specific skills relevant to the content of the programme.
- Experiment and practice Development of experimental practical skills and technical skills relevant to the course programme.
- Development of learning to learn skills and lifelong teaching skills for latest advancement in technology.
- Outcome attainment through content beyond syllabus
- Development of positive attitude, professional ethics and etiquettes.
- Development of skills for individual and team work during performance and otherwise.
- Maintaining Business Secrecy
- Development of Communication Skills
- Ability to follow the instructions
- Ability to follow the safety precautions
- Ability to supervise the task
- Ability to coordinate with subordinates and higher ups
- Development of Interpersonal skills
- Environmental Consciousness and Sustainability
- Development of Observational Skills
- Development of Self-discipline and Integrity
- Development of Time Management habits
- Development of generic skills such as pro-activeness, commitment
- Development of Problem-Solving abilities
- Achievement of target
- <u>Concern for Environment, Sustainability Society</u>
- Communication ability
- Industrial System and its development
- Safety Awareness
- Systematic Operations and Productions
- Quality control
- Management of work place and work force
- Development of positive attitude
- Work culture/Quality Culture
- Development of Professional Ethics
- Industrial Management
- Systematic planning, Implementation & Evaluation
- Use of engineering tools, techniques, software's and Procedures
- Development of Lifelong learning skills

It is important to note that outcomes attained during industrial visit are at the awareness level only.

4. Actions to be taken by the Students and Teachers:

Students are sent to Industrial training after briefing on various aspects. During industrial training, observational skills in students are required to a great extent -

- Students need to be alert, meticulous and record the data, as briefed to them before the industrial training.
- Record of observations on safety precaution to be followed, any special point during performance and handling of equipment, performance on technical aspects and other related aspects need to be taken care of.
- Continuous observation, monitoring and assessment on various behavioral and performance of technical aspects of each student need to be critically observed and recorded by the teachers using different assessment tools.

5. Post Training Assessment:

The students need to be assessed on report writing, presentation and interpretation of data recorded, on various dimensions, planned and performed, after the industrial training. The actions are required to be taken for assessment during report writing, analysis, interpretation, presentation of data and its assessment.

J) Initiatives by Govt. of India and other Agencies for Industrial Internship/ Training/Visit for Skills Development:

1. Initiatives by Govt. of India, GOI

a. Initiatives by Ministry of Skills Development and Entrepreneurship: Many efforts are initiated by different agencies in this direction as per our Prime Minister's Skills Development Mission. Make in India, Skills India etc are such initiatives taken by ministry for the benefit of the students. The Ministry is responsible for co-ordination of all Skill Development efforts across the country, removal of disconnect between demand and supply of skilled manpower, building the vocational and technical training framework, skill up-gradation, building of new skills and innovative thinking not only for existing jobs but also jobs that are to be created. The Ministry aims to skill on a large scale with speed and high standards in order to achieve its vision of a 'Skilled India'.

b. Initiatives by Ministry of Education, Govt. of India

i. Ministry of Education, Government of India is providing students a platform to inculcate a culture of product innovation and a mindset of problem solving to solve some of pressing problems solving to solve some of pressing problems we face in our daily lives through Smart India Hackathon (SIH) 2019.
 SIH 2023 brings the next generation evolution by inclusion of new methodology to inculcate the culture of startup and innovation ecosystem across different age groups i.e. are as follows: -

- SIH Junior (Jr) School students from 6th to 12th class will be able to showcase their talent and generate out-of-the-box open innovation ideas.
- SIH Senior (Sr) Regular Students of HEI's pursuing "Graduate/Post-Graduate/Ph.D." will be able to showcase their talent and generate out-of-the-box open innovation ideas
- **ii.** Internshala: Internshala is India's largest internship and training platform where more than 80,000 companies look for interns in various profiles (Engineering, management, media, arts etc.) AICTE has also partnered with Internshala for providing internship opportunities to every student in AICTE approved colleges. This facility is created to provide a platform for hands on experience to our future technicians on the relevant industries. With this experience, they are updated with the latest advances in their field of work.

Government of India through, AICTE is engaged in promoting the concept of industrial training through its various scheme, such as Internshala. The teachers now have the responsibility to understand in depth and implement such schemes in the institution for the benefit of students. At institute level also, there is need to develop policy for sending the students for industrial training.

c. Initiatives by All India Council for Technical Education (AICTE)

All India Council for Technical Education (AICTE) has been actively promoting various schemes to enhance internship, industrial training, and industrial visit opportunities for students pursuing technical education. These schemes aim to provide practical exposure, industry-relevant skills, and hands-on experience to students enrolled in AICTE-approved institutions. Since the schemes are reviewed continuously, the latest update can be referred through AICTE website.

- i. AICTE Training and Learning (ATAL) Academy: The ATAL Academy provides opportunities for faculty and students to participate in various skill development programs, including internships and industrial training, to enhance their technical knowledge and expertise.
- **ii. AICTE Doctoral Fellowship Scheme**: This scheme offers financial support to full-time Ph.D. scholars to undertake internships, research visits, or collaborative work with industry and research organizations in India and abroad.
- iii. Margdarshan Scheme: The Margdarshan Scheme encourages faculty members to interact with industries and update their technical knowledge, which, in turn, benefits the students through better industry exposure and guidance. The National Education Policy (NEP) 2020 has also stressed on accreditation and it forms one of the four pillars for benchmarking and ensuring quality. The creation of National Accreditation Council as envisaged under NEP is thus only a matter of time after the suitable legislation is enacted. As per the NEP, accreditation shall be the sole driver for all future educational restructuring and changes. Hence it has become much more essential for an institute to strive and obtain accreditation for their programmes. This Margdarshan Initiative was last revised in May 2022. While the scheme has progressed, a need was felt to undertake a review and amplify the guidelines based on the feedback from the environment and other developments.
- iv. AICTE Training and Learning (ATAL) FDP Internship: Under this scheme, faculty members have the opportunity to undergo internships at reputed industries to gain practical insights and update their teaching methodologies.
- v. AICTE Internship Policy: AICTE has laid down an Internship Policy to encourage students to undertake internships as part of their academic curriculum. This policy aims to enhance their employability and bridge the gap between industry and academia.
- vi. AICTE-MODROBS (Modernization and Removal of Obsolescence) Scheme: The MODROBS scheme supports the modernization of laboratories and workshops in technical institutions to enhance students' hands-on training experience. The scheme aims to modernize and remove obsolescence in the Laboratories / Workshops / Computing facilities (Libraries are excluded), so as to enhance the functional efficiency of Technical Institutions for Teaching, Training and Research purposes. It also supports new innovations in Class Room and Laboratory / Teaching Technology, development of Lab Instructional Material and appropriate Technology to ensure that the practical work and project work to be carried out by students is contemporary and suited to the needs of the Industry.
- vii. AICTE Vocational Education Programs: AICTE supports vocational education programs that incorporate practical training, internships, and apprenticeships to make students industry-ready.
- viii. Industrial Visits and Training by Institutions: While not a specific AICTE scheme, AICTE-approved institutions often organize industrial visits and training programs as part of their curriculum to provide practical exposure to students.

d. Initiatives by Ministry of Labour and Employment, Govt. of India

Ministry of Labour and Employment, Government of India launched a National ICT based job portal known as National Career Service (NCS) portal to connect the opportunities with the aspirations of youth. This portal facilitates registration of job seekers, job providers, and skill providers. Career counsellors, etc. The portal provides job matching services in a highly transparent and user-friendly manner. These facilities along with career counselling content are delivered by the portal through multiple channels like career centres, mobile devices, CSCs, etc.

The portal provides information on over 3000 career options from 53 key industry sectors. Job seekers also have access to industry trends in a user-friendly way. The NCS portal links job-seekers, employers, counsellors and training providers all through Aadhaar-based authentication. Registration to NCS portal is online and free of charge. The salient feature of NCS portal includes the following:

- Career counselling and Guidance
- Enabling Skill Development
- Empowering Job Seekers to find the right job
- Enabling employers to pick the right talent
- Enhancing capabilities of students through training Information's related to Job Fairs/Placements

Employment Exchanges Mission Mode Project (EE - MMP)

The Employment Exchange Mission Mode project is one of the 31 Mission Mode Projects under National e-Governance Plan (Ne-GP). Budget of INR 148.70 crore has been approved for 12th Five Year Plan for this project in December, 2013. The aim of EE-MMP is to provide career options and facilitate informed choice to the job seekers by providing a national platform for interface between stakeholders for responsive, transparent and efficient career services in order to meet the skill needs of a dynamic economy. The objective of EE-MMP is to take up process

Re-engineering and convert NES (National Employment Service) into NCS (National Career Service).

National Career Service (NCS)

NCS is proposed to have variety of services like information about skill development courses, apprenticeship, internship, career counseling, etc. along with all employment related services. It is expected that the NCS would be accessible to all stakeholders, based on partnerships and would provide larger number of services supported by call centers/helpdesk and through network of new nodes like CSC (common service centers), etc.

The main stakeholders for the NCS would include:

- Unemployed candidates seeking jobs
- Students seeking career counseling
- Candidates seeking vocational / occupational guidance
- Illiterate, under-privileged sections of society, blue-collar workers seeking placements and guidance
- Person with different abilities (PWDs), ex-servicemen, veterans / senior citizens, etc.
- Employers seeking suitable candidates

e. Initiatives by Telecom Sector Skill Council (TSSC)

TSSC has taken a step towards fulfilling the emerging requirements of the industry by partnering with key stakeholders in order to bring the latest content to the forefront. TSSC have got into partnership with All India Council for Technical Education (AICTE) for summer internship programme and various other MNCs to impart Skilling in new emerging technologies. Some of the prime courses in new emerging technologies being offered by TSSC in addition to TSSC Qualification packs are as under:

- Artificial Intelligence & Data Science
- Cyber Security
- Internet of Things
- Android
- AR/VR

In addition to this certain course on life skills/soft skills, employability related skills are also planned for the students such as

- Problem solving and analytic
- Communication skills
- Lifelong learning
- Behavioural Skills
- Professional Behavioural etc.

The main objectives of TSSC are as follows

- Bridge the gap and enhance employability of our students
- Training young minds towards 21st Century skills assisting industry cross-sector
- Meet the needs of school leavers and graduates, employers, government educational institutions and society.
- Address the need for quality, skill training for human resources to complement the large goal of accomplishing the include growth.
- Address the limited capacity of skills development facilities in India
- To develop extensive placement linkages with employers in all sectors to provide gainful entry-level employment opportunities to youth undergoing the skill training.
- Industry participation in developing the skill training solutions to address critical skill gaps by standardization of training content, delivery and assessment process o improve overall competitiveness of the industry.
- Set up a comprehensive pan- India Labour Market Information System (LMIS) i.e. preparing a webbased compendium of job roles and skill types to assist in planning for re-skilling, delivery of training and employability.
- Undertake occupational mapping and skill gap analysis i.e. identification of skill development needs based on LMIS and emerging technologies.
- Rationalize and maintain a skill inventory.
- Create a skill development plan in coordination with Electronic and IT sector skill councils.
- Review and identify emerging skill gaps by trend analysis.
- Develop National Occupational Standards (NOS) that feature skill competency standards and qualifications.
- Refine the existing curricula to align it with NOS, obtain approval from an industry led body of experts and facilitate building of delivery capacity.
- Plan and institutionalise an effective system for training of trainers.
- Steer the affiliation and accreditation processes to enable quality assurance in training in par with international standards. Steer the affiliation and accreditation processes to enable quality assurance in training in par with international standards.

- Create an assessment framework to award tamper proof certifications to trainees.
- Promote academies of excellence by nurturing state of vocational training.
- Manage resources efficiently to achieve results and value for money.

2. Initiatives by other agencies

a. Initiatives by Engineering Council of India (ECI)

(ECI has also taken initiatives to organize series of interactive workshops to update and apprise the students about the products and services being offered by respective corporate house. This interaction will definitely bring the institute and industry closer and help in planning for effective implementation of industrial training.

b. Others

Many public sector and private organizations are also contributing to the course of quality improvement in technical education system by way of arranging industrial visit of providing industrial training to the students as a part of their corporate social responsibility and also for the growth of technical education system of the country.

- K) Assessment Rubric for Internship, Industrial Visit & Industrial Training: Assessment Rubric for Internship, Industrial visit and industrial training should be prepared based on the objectives set and type of industries where internship/visit or training has been planned. Specific criteria of performance/assessment before, during and after the internship, industrial visit and industrial training should be identified by the implementing teachers for designing the rubric. For objective, valid and reliable assessment of Industrial Training, Industrial Visit and Internship, different tools of assessment such as a checklist, rating scale, assessment rubric, observation schedule, portfolio assessment, incidental records etc. need to be prepared by teachers. Even the students may be encouraged to adopt self-assessment techniques using the assessment rubrics.
- L) CO-PO, PSO Mapping: Based on the requirement of programme, objectives set and type of internship, industrial visit and industrial training placed at different semesters, CO-PO, PSO mapping need to be done. This mapping will vary at different semesters for same programme. Implementing teachers play very important role in developing the CO-PO, PSO matrix.

M) References:

- AICTE Internship Policy: Guidelines & Procedures (Nelson Mandela Marg, Vasant Kunj, New Delhi-110070)- https://aicte-india.org/sites/default/files/AICTE%20Internship%20Policy.pdf
- **AICTE Internship Policy Guidelines & Procedures-** https://www.aicteindia.org/sites/default/files/Aicte%20Internship%20Policy-%2002.04.2019.pdf
- AICTE Quality Initiatives In Technical Educationhttps://www.aicteindia.org/sites/default/files/AICTE%20QUALITY%20INITIATIVES%20IN%20TECHNICAL %20EDUCATION.pdf
- AICTE Internship Portal- https://internship.aicte-india.org/
- Industrial Visit- https://www.dsu.edu.in/commerce-management/scms-industrial-visit
- AICTE Idea (Idea Development)- https://idealnet.aicte-india.org/assets/data/scheme_doc.pdf

- AICTE Initiative- https://aicte-india.org/initiatives
- Draft Guidelines for Research Internship with Faculty and Researchers at Higher Education Institutions/Research Institutions- https://www.ugc.gov.in/pdfnews/1887287_Rsearch-Internship-Guidelines-120522.pdf
- AICTE internship 2022: Everything you need to know- https://ischoolconnect.com/blog/aicteinternship-everything-you-need-to-know/
- Industrial Visits Policy and Analysis- https://www.sggs.ac.in/home/page/Industrial-Visits-Policy-and-Analysis
- Field Visit and Industrial Visit Policy 2023 (Valid till May 2026)- https://www.bitsathy.ac.in/wp-content/uploads/Field-Visit-and-Industrial-Visit-Policy.pdf
- Industry Interaction Initiatives- https://sjbit.edu.in/industry-interaction-initiatives-ise/
- Internship Policy: Guidelines and Procedures 2021-22 Onwards- https://scetngp.com/wp-content/uploads/2023/04/Internships-Training.pdf
- Industrial Training Policy (Through Internship)https://vignaniit.edu.in/naac/criteria6/6.2.2%20Attachments/211229_Industrial%20Training%20policy. pdf
- UG Internship/Industrial Training/Project Work Guidelines (w.e.f. Academic Session 2020-21)https://nitkkr.ac.in/wp-content/uploads/2021/09/UG-Internship-Guidelines_final-08042021.pdf
- Internship Policy- https://iar.ac.in/wp-content/uploads/2022/02/IAR-Internship-Policy.pdf
- Industry Institute Interaction Policy- http://www.gcekarad.ac.in/Placement/III_Policy_2021_Main.pdf
- Internship Policy August 2021- https://ksrct.ac.in/wp-content/uploads/2022/12/Internship-Policy.pdf
- Summer Internship Programme (Sip) Policy: Guidelines & Procedures- https://www.ipeindia.org/wpcontent/uploads/2021/12/SIP-Guidelines-EDITED-21st-MAR-2021-Inline with- AICTE-Internship-Policy-2019-1.pdf
- Internship Policy: Guidelines and Procedures with Effect from Academic Year 2020-2021https://www.kitcoek.in/documents/academics/internship-policy/kit-internship-policy-2020.pdf
- Internship / Industrial Training- https://www.dkte.ac.in/placement/internship
- Ministry of Commerce and Industry (DPIIT Internship Scheme)https://www.myscheme.gov.in/schemes/dpiit-is

- A) **Course Code** : 2425507(P2425507/S2425507) B) **Course Title** : Minor Project C) **Pre-requisite Course(s)** : :
- D) Rationale

Project work plays a very important role in engineering education in developing core technical skills, soft skills and a higher level of cognitive, psychomotor and affective domain skills. It encourages the critical thinking process in the students. Project work is normally done when students have acquired sufficient knowledge, skills and attitude and are able to integrate all these, entirely in a new situation or task to solve the problems of the industries/real world. Project work also develops many soft skills like confidence, communication skills, creative ability, inquisitiveness, learning to learn skills, lifelong learning skills, problem-solving skills, management skills, positive attitude, ethics etc.

In diploma programme of state of Bihar, minor project is being carried out at 5th semester where all aspects of project planning will be deal in detail.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- Identify a real-world problem in the form of a project to be developed. CO-1
- CO-2 Perform literature survey related to the identified area/problem.
- Identify preliminary resource requirements (Equipment, Tools, Software, Manpower, Services) CO-3
- CO-4 Prepare project synopsis for the identified problem/project title within stipulated time period.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Outcomes (POs)										
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	Designy	PO-4 Engineerin gTools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO- 6 Project Management	PO-7 Life Long Learning		PSO-2			
CO-1	3	2	-	-	-	-	1					
CO-2	3	2	-	-	-	2	1					
CO-3	3	2	-	2	-	2	1					
CO-4	3	-	-	-	-	3	1					

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course Title	Scheme of Study (Hours/Week)								
Code		Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours	Total Hours	Total Credits (C)			
		L	Т		(TW+ SL)	(CI+LI+TW+SL)				
2425507	Minor Project	-	-	02	02	04	02			

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

	Course Title		A	ssessment So	cheme (Mar	ks)		
Course Code		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)
		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
2425507	Minor Project	-	-	10	15	10	15	50

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Suggested Implementation Plan of Minor Project:

Suggested implementation plan of minor project along with guidelines to teachers and students are mentioned below. For effective implementation of the project work in totality, different steps are to be carried out at different stages of the comprehensive project work.

- Project Planning. (Minor Project)
- Design, development and execution of the project.
- Quality of report writing and presentation.

. (Major Project)

In this semester, under the minor project work, the students are guided and monitored to under take Project planning steps as mentioned below. While, the remaining steps of project implementation will be carried out during major project work in next the semester.

1.0 Guidelines to Students for Implementation of Minor Project.

Students are guided to undergo following steps under the minor project. Teacher are advised to guide the students on each and every step.

- 1.1 Identification of Area/Problem and Project Titles
- 1.2 Literature Survey
- 1.3 Identification of Outcomes of the Project
- 1.4 Identification of the recourses required.
- 1.5 Preparation of Synopsis
- 1.6 Presentation of Synopsis

1.1 Identification of Project Titles and Allocation Methodology:

Though the teachers and students, both are involved in identification of project titles, but the prime responsibility of identification of project titles goes to the respective teachers involved in implementing the course or programme. Teachers are fully aware of course/programme curriculum and they are also aware of related industrial problems hence, they try to explore the possibility of identification of project titles through these problems.

These small industrial problems in the form of project titles may be brought into the laboratories or workshop of institutions of a specific programme, which are equipped with all necessary facilities and resources to carry out the project work. These labs or workshop can function as miniature industry to solve the industrial problems in the form of simulated industrial projects. These projects may be integrated problem of courses or programme.

Criteria for Identification of Project Titles.

The identification of problem statement must be based on the following criteria:

- Environmental Considerations
- Simulated/Automated Industry's/ Improvised Process
- Application or Utility in the World of Work.
- Relevance to the Curriculum
- Mapping of Outcomes of Project with Pos and PSOs (if applicable)
- Feasibility of Implementation of the Project

1.2 Literature Survey:

Literature survey on the project title needs to be done through journals, websites, open source technologies available, discussion with the practicing engineers/industry persons and other relevant sources available.

1.3 Outcomes of the Project:

The project guide should ensure that the project outcomes are written properly as clear, specific, measurable and attainable statements. The outcomes formulated will decide the overall scope or course of action, depth and breadth of the project and implementation plan.

1.4 Identification of the recourses required:

Students under the guidance of teacher should try to identify all the resources required for the completion of the project like equipment, devices, experimental test rig, software, computer, persons to be contacted, suppliers, funds, availability of internal/external lab. The sample size has to be delimited and decided as per the time limit allotted, feasibility and many other considerations.

1.5 Preparation of Synopsis:

The students at the end of the semester are expected to submit 'Project Synopsis' after interaction with guide, as per the guidelines and format provided.

1.6 Presentation of Synopsis:

After developing the synopsis, student(s) should prepare a Power Point Presentation and present the same in front of examiner, guide and audience. Quality of presentation of data need to be ensured using the following criteria through Rubric-

- Clarity in Communication and Presentation
- Voice Audibility
- Use of Media and Methods
- Satisfying the Queries of Audience
- Attainment of Outcomes

2.0 Guidelines to Teachers for Implementation of the Minor Project:

The teacher alongwith the students should identify the different types of project title(s) as per need of the client as mentioned below:

- Prototype Development
- Experimentation Type
- Software Development Type
- Solving Industrial Problem Type
- Market Survey Type
- Feasibility Study Type
- Simulation Based
- Application Type
- Product Type
- Research Type
- Review Type

The project must be feasible. The guide allocated for each project are responsible for the quality of student's work, on different criteria including the synopsis writing which can be monitored on continual basis.

The guide must ensure that the feasibility of the project, the availability of resources/ software technology, sufficiency of time, finance and requirements during each and every step or activity of project work in advance.

J) Assessment of the Minor Project:

Continual Monitoring and feedback mechanism should be developed by the guide. An assessment plan on weekly progress/updates, action taken on different criteria and sub-criteria of the project work is suggested below. Path-breaking teachers who think out of the box are required to guide, monitor and evaluate the project work.

For objective, valid and reliable assessment, different tools of assessment such as a checklist, rating scale, assessment rubric, observation schedule, portfolio assessment, incidental records etc. need to be prepared. Even the students may been courage to adopt self-assessment techniques using the assessment rubrics.

The students need to be assessed continuously based on the below mentioned assessment criteria at project planning stage. The Project guide must prepare detailed rubric(s) for each criteria to have valid and reliable assessment.

S. No.	Suggested Assessment Criteria	Suggested Weightage (%)
1.	Identification of Area/Problem Statement	10
2.	Literature Survey	20
3.	Formulation of Project Title	10
4.	Clarity in Formulation of Outcomes of The Project	10
5.	Preparation of Synopsis	30
6.	Presentation of Synopsis	20
	Total	100

Assessment Scheme for Minor Project
