Curriculum of Diploma Programme

in

Electrical Engineering

Department of Science, Technology and Technical Education (DSTTE), Govt. of Bihar

State Board of Technical Education (SBTE), Bihar

Diploma in Electrical Engineering SBTE, Bihar

Semester – V

Teaching & Learning Scheme

Course Codes	Category of course	CourseTitles	Teaching & Learning Scheme (Hours/Week)							
Codes			Classroom Instruction (CI)		Lab Instruction	Notional Hours	Total Hours	Total Credits		
			L	T	(LI)	(TW+ SL)	(CI+LI+TW+SL)	(C)		
2420501	PCC	Switchgear and Protection	03	-	04	02	09	06		
2420502	PCC	Solar & Wind Power Technology	03	-	04	02	09	06		
2420503	PCC	Energy Conservation and Audit	02	-	01	02	05	04		
2400504	OEC	Open Electives*/ COE (Basic - Any One)	03	-	04	02	09	06		
2400505	NRC	Entrepreneurship Development & Start ups (Common for All Programmes)	-	-	04	02	06	03		
2420506	PSI	Summer Internship- II (After 4 th Sem) / Industrial Training (Common for all programmes)	-	-	02	04	06	03		
2420507	PSI	Minor Project (Common for all programmes)	-	-	02	02	04	02		
	•	Total	11	-	21	16	48	30		

Note: Prefix will be added to course code if applicable (T for Theory Paper, P for Practical Paper and S for Term Work) Legend:

- CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)
- L1: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

- TW: Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)
- SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.
- C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)
- *: 3D Printing & Design/ Artificial Intelligence (AI)/ Drone Technology/ Electric Vehicle/ Industrial Automation & Control /IOT / Robotics
- Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

Diploma in Electrical Engineering SBTE, Bihar

Semester - V Assessment Scheme

				Assessm	ent Scheme (M	arks)				
				eory ssment		Self-Learning sment	Lab Asses (L		A+LA	
			(TA)		(TWA)		(LA)		MT	
Course Codes	Category of course	Course Titles	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TWA+LA)	
2420501	PCC	Switchgear and Protection	30	70	20	30	20	30	200	
2420502	PCC	Solar & Wind Power Technology	30	70	20	30	20	30	200	
2420503	PCC	Energy Conservation and Audit	30	70	10	15	10	15	150	
2400504	OEC	Open Electives*/ COE (Basic - Any One)	30	70	20	30	20	30	200	
2400505	NRC	Entrepreneurship Development & Start ups (Common for All Programmes)	-	-	20	30	20	30	100	
2420506	PSI	Summer Internship- II (After 4 th Sem) / Industrial Training (Common for all programmes)	-	-	20	30	20	30	100	
2420507	PSI	Minor Project (Common for all programmes)	-	-	10	15	10	15	50	
		Total	120	280	120	180	120	180	1000	

Note: Prefix will be added to course code if applicable (T for Theory Paper, P for Practical Paper and S for Term Work)

Legend:

TWA:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

3D Printing & Design/ Artificial Intelligence (AI)/ Drone Technology/ Electric Vehicle/ Industrial Automation & Control /IOT / Robotics

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

A) Course Code : 2420501(T2420501/P2420501/S2420501)

B) Course Title : Switchgear & Protection

C) Pre- requisite Course(s) : Electrical Circuit and Networks/Electrical Measurements

and Instrumentation

D) Rationale

Now a days electricity plays a pivotal role in all aspects of life. Therefore, it has become imperative to ensure a reliable power supply and in order to achieve that one must have knowledge of various protection schemes employed in power system. This course offers the study of switchgear and protection schemes in power system networks which is expected to enable our students to maintain the reliability of electric supply, safety and protection of system & devices while performing their duties as a supervisor or a technician in substation, manufacturing industries and public service utilities.

Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Identify the faults in a power system network.
- **CO-2** Test various switchgears used in power system network.
- **CO-3** Use various protective relays to protect power system networks.
- **CO-4** Apply appropriate protection scheme to protect alternator, motor and transformer.
- **CO-5** Apply suitable protection scheme to protect busbar and transmission line.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Outcomes(POs)									
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2		
CO-1	3	3	3	1	-	1	3				
CO-2	3	2	1	-	1	2	2				
CO-3	3	2	2	2	1	2	2				
CO-4	3	2	2	3	1	2	1				
CO-5	3	2	2	3	1	2	1				

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)								
Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)			
		L	Т							
2420501	Switchgear & Protection	03	-	04	02	09	06			

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			А	ssessment S	cheme (Mar	ks)		
		Theory Ass (TA		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (T.
2420501	Switchgear & Protection	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2420501

Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1a.	Explain the need of protection system.	Unit-1.0 Fundamentals of Protection System	CO1
TSO 1b. TSO 1c. TSO 1d. TSO 1e. TSO 1f.	Describe the functions of various elements of protection system. Classify different types of faults. Explain the significance of back up protection. Calculate the short circuit current for the given condition. Select a suitable current limiting reactor for the given situation. Draw single line diagram for the given	 1.1 Necessity & the function of protection system 1.2 Normal & Abnormal conditions in a power system 1.3 Faults: Symmetrical and unsymmetrical 1.4 Protective zones: primary & backup Protection 1.5 Short circuit fault calculation for symmetrical fault 1.6 Current limiting reactors: need & their Arrangements. 1.7 Single-line representation of a simple power 	
TSO 1h.	power system network. Justify the need of per unit system in power system	system 1.8 Per unit system: Introduction, simple numerical on PU system.	
TSO 2a.	Explain the basic terminology related to fuse.	Unit-2.0 Protective Devices	CO1, CO2
	Describe the construction & operation of HRC fuse. Explain the operation of isolators.	2.1 Fuse: necessity of fuse, working principle material used in fuse.2.2 Types of fuses: Cartridge type, HRC fuse	
	Differentiate between Fuse, circuit breaker and Isolator	2.3 Isolators: working principle, Vertical break Horizontal break & Pantograph type.2.4 Circuit Breaker: Arc formation process, method:	5
	Explain various current capacity of circuit breaker. Describe arc quenching methods of circuit	of arc extinction (High resistance and low resistance), Restriking voltage, RRRV 2.5 Miniature Circuit breaker, Moulded case circuit breaker, Posidual gurrant circuit breaker, and	t
TSO 2g.	breaker. Explain the operation of various circuit breakers. Classify the given circuit breaker based on the rating and their uses.	breaker, Residual current circuit breaker and earth leakage circuit breaker (working and thei application) 2.6 Classification of Circuit Breakers: Miniature circuit breaker (MCB), Moulded Case Circuit Breaker (MCCB), Air Circuit Breaker, Air Blas Circuit Breaker, Oil Circuit breaker- Minimum and bulk oil circuit breaker, vacuum circuit breaker, Sulphur hexafluoride: - working construction, specifications, and application 2.7 Ratings of circuit breakers 2.8 Selection of HT & LT circuit breakers	
TSO 3a.	Explain the significance of protective relays in power systems.	Unit-3.0 Protective Relays 3.1 Introduction to protective relays	CO1, CO3
TSO 3b.	Interpret the given quality requirement of the protective relay.	3.2 Fundamental quality requirements: selectivity	
	Explain various parameters and terminology related to protective relays.	speed, sensitivity, reliability, simplicity economy 3.3 Basic relay terminology: Protective relay relaying time, pick up current, reset current	,
	Explain the working principle of the given relay. Explain the operation of	current setting, plug setting multiplier, Time setting multiplier. 3.4 Protective relays: Electromagnetic and	
TSO 3f.	microprocessor-based relay Classify the overcurrent relay on the basis of its time-current characteristics.	 Induction relay, thermal relay, overvoltage relay, static relay. 3.5 Microprocessor-based protection relay 3.6 Characteristics of various Overcurrent relay, 	

Ma	ajor Theory Session Outcomes (TSOs)		Units	Relevant COs
TSO 3h.	Classify various types of distance relay Explain the operation of the directional relay. Describe the operational aspects of differential protection scheme.	3.7 3.8 3.9	Distance relay: Reactance relay, impedance relay and Mho relay. Directional relay: need and operation Differential protection	Number(s)
TSO 4b.	Classify the different types of faults in an alternator. Explain the given protection scheme used for the alternator.	4.1	Alternator Abnormalities and faults	CO1, CO2, CO3, CO4
	Classify the various types of faults in a motor. Explain the protection scheme for the given motor.	4.2	Protection: Overcurrent, overvoltage- undervoltage, earth fault, overheating and field failure. Reverse watt metric relay	
	Classify different types of faults in a transformer. Explain the given protection scheme in an transformer.	4.4 4.5	Motor Abnormalities & faults Protection: Overcurrent, Overload, Overvoltage, Undervoltage, overheating.	
	Describe the operation of Buchholz relay. Explain the operation of differential protection.	4.6 4.7 4.8 4.9	Transformer Abnormalities and faults overcurrent, earth fault and overheating protection Buchholz relay- Construction, operation, merits and demerits Differential protection: alternator and	
TSO 5b.	Enlist the various faults in a bus bar and transmission line Explain the given type of differential protection scheme for protection of bus bar. Explain the working of distance protection scheme used in a transmission line.	Unit 5.1 5.2	transformer t-5.0 Busbar & Transmission Line Protection Bus bar & Transmission line- Abnormalities & Faults. Bus bar protection- differential protection (low impedance and high impedance).	CO1, CO2, CO3, CO5
	Explain the importance of three-zone protection in a transmission line. Explain the operation of pilot wire protection	5.3	Transmission line - distance, three zone of protection and pilot wire protection.	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2420501

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant Cos Number(s)
LSO 1.1 Draw a single-line diagram of a 3-phase transmission line. LSO 1.2 Identify symbols of various power system components.	1.	Single line diagram of 3-phase transmission line	CO1
LSO 2.1. Identify symmetrical and unsymmetrical faults using the fault analyzer kit	2.	Identification of symmetrical and unsymmetrical faults using a fault analyzer	CO1
LSO 3.1. Test the performance of HRC fuse by load test	3.	Testing of HRC fuse by load test	CO2
LSO 4.1 Test the performance of MCB by load test.	4.	Testing of MCB by load test	CO2

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant Cos Number(s)
LSO 5.1 Dismantle the circuit breaker available in the laboratory and identify its components.	5.	Dismantling of the given circuit breaker.	CO2
LSO 6.1 Test the performance of MCCB by load test.	6.	Testing of MCCB by load test	CO2
LSO 7.1 Test the performance of ELCB by load test.	7.	Testing of ELCB operation by load test.	CO2
LSO 8.1 Test the performance of the air circuit breaker using the ACB kit.	8.	Testing of Air Circuit Breaker	CO1, CO2
LSO 9.1 Test the performance of the SF6 circuit breaker using the SF6 kit	9.	Testing of SF6 circuit breaker	CO1, CO2
LSO 10.1 Test the performance of the Vacuum circuit breaker using the VCB kit.	10.	Testing of Vacuum circuit breaker	CO1, CO2
LSO 11.1 Test the performance of the overcurrent relay using the overcurrent relay kit.	11.	Testing of overcurrent relay	CO1, CO3
LSO 12.1 Test the performance of the differential relay for a given transformer using a differential relay kit.	12.	Testing of differential relay for given transformer	CO1, CO3, CO4
LSO 13.1 Test the performance of differential relay for a given alternator using a differential relay kit.	13.	Testing of differential relay for given alternator	CO1, CO3, CO4
LSO 14.1 Test the performance of distance relay by distance relay kit	14.	Testing of distance relay for transmission line protection	CO1, CO3, CO5
LSO 15.1 Test the performance of Low impedance differential relay for a given busbar protection kit	15.	Testing of Low impedance differential relay for Busbar protection	CO1, CO3, CO5
LSO 16.1 Test the performance of High impedance differential relay for a given busbar protection kit	16.	Testing of High impedance differential relay for Busbar protection	CO1, CO3, CO5

- L) Suggested Term Work and Self Learning: S2420501 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted Cos.
 - 1. A 3-phase, 20 MVA, 10kV alternator has an internal reactance of 5% and negligible resistance. Find the external reactance per phase to be connected in series with the alternator so that the steady current on short-circuit doesn't exceed 8 times the full load current.
 - 2. Justify the use of reactors in power systems.
 - 3. List out the possible causes of short-circuit in the power system.
 - 4. Explain the importance of base kVA in short circuit calculations.
 - 5. Explain the various arrangements of short-circuit current limiting reactors used in power system.
 - 6. Explain if the change in base kVA affect the value of short circuit current.
 - 7. A circuit breaker is rated as 1500A, 1000 MVA, 33 kV, 3 second, 3 phase oil circuit breaker. Find (i) rated normal current (ii) breaking capacity (iii) rated symmetrical breaking current (iv) rated making current (v) short time rating
 - 8. Explain the importance of short-time rating in circuit breakers.
 - 9. Differentiate between overcurrent and current differential relay based on operation, construction and application.

- 10. Describe the protection scheme that protects the alternator in an earth fault.
- 11. Describe the distance protection schemes for the protection of feeders.

b. Micro Projects:

- Survey AIS & GIS substations and submit a report describing the protection system used.
- (ii) Select the switchgear and protective elements (with rating) used in 5MVA, 33kV/ 11 kV substation.
- o (iii) Prepare a power board that performs load tests on fuse and MCB and submit a report on it.
- (iv) Design a protection scheme for any one electrical engineering laboratory of the institute and submit a report with a single-line diagram.
- (v) Prepare a report on Major power grid failures that happened in the past.
- (VI) Prepare a protection system model for a given feeder (Transmission line, transformer, alternator etc.) of a substation.
- 132/33 kV line bay.

c. Other Activities:

1. Seminar Topics:

- Substation installation as per the CBIP manual on the substation.
- Earthing design and installation as per IS 3043.
- Role and various parameters of current Transformer as per IS 2705.
- Buchholz Relay
- Differential Protection for Alternator

2. Visits:

- Visit a nearby Gas Insulated Substation (GIS) indoor substation and prepare a report describing various protective equipment used.
- Visit a nearby air-insulated (AIS) outdoor switchyard and prepare a report describing various protective equipment used.
- Collect data for different protective schemes used for alternators, transformers, bus bars, and transmission lines through the internet and validate it in industrial visits.

3. Self-Learning Topics:

- Advanced protective zones such as quadrilateral characteristics of Distance Protection
- Substation Automation system (SAS)
- Insulation Coordination
- Lightning phenomenon
- Power Line Carrier Communication
- SCADA

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

Semester- V

			Cou	ırse Evalua	tion Matrix			
	Theory Asses	sment (TA)**	Term Wo	rk Assessm	ent (TWA)	Lab Assessment (LA)#		
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)		ork & Self Assessmen	· ·	Progressive Lab Assessment	End Laboratory Assessment	
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)	
	Sem Test			Projects	Activities*			
CO-1	10%	10%	35%		-	15%	20%	
CO-2	35%	35%	25%		40%	45%	20%	
CO-3	25%	25%	15%	100 %	20%	10%	20%	
CO-4	20%	20%	15%		20%	20%	20%	
CO-5	10%	10%	10%		20%	10%	20%	
Total	30	70	20	20	10	20	30	
Marks				50		1		

Legend:

- *: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.
- **: Mentioned under point- (N)
 #: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom	COs	Marks	Remember	Understanding	Application
	Instruction	Number(s)		(R)	(U)	& above
	(CI)					(A)
	Hours					
Unit-1.0 Fundamentals of	6	CO1	10	3	3	4
Protection System						
Unit-2.0 Protective Devices	16	CO1, CO2	20	6	6	8
Unit-3.0 Protective Relays	12	CO1, CO3	16	4	4	8
Unit-4.0 Alternator, Motor and	8	CO1, CO2,	14	4	4	6
Transformer Protection		CO3, CO4				
Unit-5.0 Busbar & Transmission	6	CO1, CO2,	10	3	3	4
Line Protection		CO3, CO5				
Total	48	-	70	20	20	30

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Delevent	PLA/ELA			
S.	Laboratory Practical Titles	Relevant COs	Perfor	mance	Viva-	
No.	Laboratory Fractical Titles	Number(s)	PRA*	PDA**	Voce	
		Number (3)	(%)	(%)	(%)	
1.	Single line diagram of 3 phase transmission line	CO1	30	60	10	
2.	Identification of symmetrical and unsymmetrical faults using a fault analyzer	CO1	40	50	10	
3.	Testing of HRC fuse by load test	CO2	40	50	10	
4.	Testing of MCB by load test	CO2	40	50	10	
5.	Dismantling of the given circuit breaker.	CO2	60	30	10	
6.	Testing of MCCB by load test	CO2	50	40	10	
7.	Testing of ELCB operation by load test.	CO2	50	40	10	
8.	Testing of Air Circuit Breaker	CO1, CO2	30	60	10	
9.	Testing of SF6 circuit breaker	CO1, CO2	30	60	10	
10.	Testing of Vacuum circuit breaker	CO1, CO2	30	60	10	
11.	Testing of overcurrent relay	CO1, CO3	30	60	10	
12.	Testing of differential relay for given transformer	CO1, CO3, CO4	30	60	10	
13.	Testing of differential relay for given alternator	CO1, CO3, CO4	30	60	10	
14.	Testing of distance relay for transmission line protection	CO1, CO3, CO5	30	60	10	
15.	Testing of Low impedance differential relay for Busbar protection	CO1, CO3, CO5	30	60	10	
16.	Testing of High impedance differential relay for Busbar protection	CO1, CO3, CO5	30	60	10	

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

Number All
2 rcurrent 3,4,5,6 3,4,5 sistive) 7 8 er (0-16 A)
3,4,5,6 3,4,5 sistive) 7 8 er (0-16 A)
3,4,5,6 3,4,5 sistive) 7 8 er (0-16 A)
3,4,5 sistive) 7 8 er (0-16 A)
sistive) 7 8 8 er (0-16 A)
8 er (0-16 A)
er (0-16 A)
and the state
ing with
9
10
Type: AC, 11
istribution,
VOLTAGE:
Ammete,
of the test
nent points
nections of
13
i:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical
			Number
		c) Testing Panel: Input: 1 Ph, 230V AC, 50 Hz, 2 Pole	
		MCB for input side, DC motor drive for DC Shunt	
		motor, Aux. supply for relays, Fault simulation	
		facility, ON/OFF switches/ MCB, Accessories:	
		Indicating lamps, Digital Ammeter, Voltmeter, AC	
		and DC side etc.	
13.	Transformer	One No. Control Panel for Study of Transformer Differential	12
	protection Trainer kit	Protection	
		2. Circuit Diagram Printed on Bakelite Panel	
		3. Three No. Of Ac Ammeter 0-5A Ac for Biased Current &	
		Differential Current	
		4. One No. of Three Phase Transformer 3KVA.	
		5. One No. of Transformer Percentage Biased Differential Relay	
		Fitted in Metal Box	
14.	Transmission line	6. One No. of Three Phase Resistive Load Bank	14
14.	protection Trainer	AC Power Supply: 0-415V AT 4A (Optional)	14
	kit	Digital/Analog Meters and Relays: Voltmeter- 2 Nos, Ammeter -	
	N.C	2 Nos, Wattmeter: 2 Nos, Power Factor Meter. (All this	
		equipment should of adequate rating.	
		Voltage Monitoring Relay,	
		Overload Relay,	
		4A Variac (3 Phase)	
		Transmission Lines 400Km (Through Resistor-Capacitor and	
		Inductors) Three Different types Fault Simulations.	
		Three Phase Lamp Load Switch Control (Star Connected) Single	
		Phase Lamp Load Switch Control	
		Three Phase Capacitive Load Switch Control (0.5A, 1.0A, 1.5A)	
		Three Phase Inductive Load Switch Control (0.5A, 1.0A, 1.5A)	

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Art & science of protective relaying	C.R. Mason	General Electric, ISBN 13 : 978 0471575528
2.	Power System Protection and Switchgear	·	
3.	Principles of Power System	V.K. Mehta & Rohit Mehta	S. Chand Publication, Revised Edition, ISBN 13:9788121924962
4.	Electrical Power System	C.L. Wadhwa	New Age International, 8 th Edition, ISBN 13:978 9393159175
5.	Fundamentals of Power System Protection	Y.G. Paithankar & S.R. Bhide	PHI Learning New Delhi, 2 nd Edition, ISBN: 978 8120341234
6.	Power System Protection and Switchgear	Bhuvanesh A Oza, Nirmal- Kumar C Nair, Rashesh P Mehta, Vijay H Makwana	McGraw Hill Education, 1st Edition, ISBN 13:978 0070671188

(b) Online Educational Resources:

- 1. https://archive.nptel.ac.in/courses/108/107/108107167/
- 2. https://nptel.ac.in/courses/108101039

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational resources before use by the students.

(c) Others:

- 1. Learning Packages
- 2. Lab Manuals
- 3. Manufacturers' operating Manual

A) Course Code : 2420502(T2420502/P2420502/S2420502)

B) Course Title : Solar & Wind Power Technology

C) Pre- requisite Course(s) : Basic Electronics Engineering and Basic Electrical Engineering, Power

Electronics

D) Rationale

In India, where many wind and solar grid connected electric power installations are in operation and supporting national grid by feeding electrical power to cope up the electric power demand of the country. Competent technicians to maintain these vital renewable energy power plants is a dire need of the industry. This curriculum has been designed to fulfill this need, so that the diploma engineer would be able to maintain the installations and thereby minimizing the downtime.

Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/industry.

After completion of the course, the students will be able to-

- **CO-1.** Install Solar PV systems with battery as per the requirement.
- **CO-2.** Install different types of solar thermal system for the given application.
- **CO-3.** Perform wind resource assessment of the identified site.
- **CO-4.** Identify different components of wind power plants.
- **CO-5.** Maintain small wind turbine systems.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2
CO-1	3	2	2	3	2	2	2		
CO-2	3	3	3	3	2	2	2		
CO-3	3	3	3	3	2	2	2		
CO-4	3	2	2	2	2	2	2		
CO-5	3	2	2	3	2	2	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course Title	Scheme of Study (Hours/Week)						
Course Code		Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)	
		L	T					
	Solar & Wind							
2420502	Power Technology	03	-	04	02	09	06	

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			А	ssessment S	cheme (Mar	·ks)		
Course Code		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)
	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+
2420502	Solar & Wind Power Technology	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2420502

M	ajor Theory Session Outcomes (TSOs)	Units	Relevant COs
			Number(s)
TSO.1a	Define the given terms related to solar radiation and geometry.	Unit-1.0 Solar PV Systems	CO-1
TSO.1b	Describe the general arrangement of solar power plant.	1.1 Solar radiation spectra, solar geometry, Earth Sun angles, observer Sun angles, solar	
TSO.1c	Explain the given type of solar cell Technologies.	day length, Estimation of solar energy availability.	
TSO.1d	Interpret the V-I characteristics of a PV cell.	1.2 Solar PV system, Block diagram and its components.	
TSO.1e	Describe the series and parallel connection of solar panels.	1.3 Solar Cell fundamentals, Technologies- Amorphous, monocrystalline,	
TSO.1f	Explain the given term(s) related to battery used in solar PV system.	polycrystalline. 1.4 V-I characteristics of a PV cell, PV module,	
TSO.1g	Describe the sizing process of PV solar system for the given applications.	Panel, array. 1.5 Series and parallel connection PV Cell and panels.	
TSO.1h	Explain the working principle of converter used in solar PV system.	1.6 Batteries: battery capacity, battery charging-rate, battery efficiency, energy	
TSO.1i	Use maximum power point tracking system for tracking the maximum power generation.	and power density,1.7 PV sizing for a given application1.8 Power Electronic Converters for Solar	
TSO.1j	Describe the features of given type of solar PV system.	Systems. 1.9 Maximum Power Point Tracking (MPPT). 1.10 Off grid and ON Grid solar system.	
TCO 2-	E	Unit-2.0 Solar Thermal Systems	CO2
	Explain solar thermal energy systems.	2.1. Solar thermal energy systems.	
	Explain Solar absorption and radiation.	2.2. Solar absorption and radiation.	
	Explain the working principle of the given solar heating systems.	2.3. Solar heating systems: principle of conversion, operation of solar water	
	Identify the components of the given solar water heating systems.	heater, types of heating systems, components and specifications of solar	
TSO.2e	Interpret the specifications of the given solar water heating systems.	water heating system, installation and maintenance.2.4. Solar cooking system: principle of cooking,	
TSO.2f	Describe the installation and maintenance procedure of the given solar water heating system.	types of solar cooker (Box type, Dish type and heat transfer type). 2.5. Solar refrigeration and Air conditioning.	
TSO.2g	Explain the working principle of given type of solar cooking system.	g g	
TSO.2h	Describe the use of solar power for refrigeration and air conditioning.		
TSO.3a	State the History of wind power, Indian and	Unit-3.0 Wind Resource Assessment	CO3
TSO.3b	Global statistics. Calculate the relation between wind speed and power.	3.1 History of wind power, Indian and Global statistics.	

Major Theory Session Outcomes (TSOs)	Units	Relevant
		COs Number(s)
TSO.3c Interpret the wind resources assessment. TSO.3d Explain the different types of monitoring station instrumentation. TSO.3e Interpret the data related to wind profile of a particular site. TSO.3f Maintain the monitoring station.	 3.2 Energy and Power in Wind, Wind energy Dynamics. 3.3 Wind Resource assessment; Initial Site identification Wind speed measurement (Cup anemometer, Ultrasonic anemometer, Propeller Aerometer). 3.4 Monitoring station instrumentation: sensors, Data loggers, Data storage Devices, Tower sensors support hardware, grounding and lighting protection. 3.5 Data collection and analysis 3.6 Installation of monitoring station. 	Number(s)
TSO.4.a Interpret the basic block diagram of WECS.	Unit-4.0 Wind Power Systems	CO4
TSO.4.b Explain the given terms related to wind turbine technology. TSO.4.c Classify the given type of wind power plant based on the construction and capacity. TSO.4.d Explain the functions of the given WPP components. TSO.4.e Explain with sketches rotation principle of the wind turbine rotor.	 4.1 Block diagram of wind energy conversion systems (WECS). 4.2 Wind turbine terminologies: Cut-in, cut-out and survival wind speed, threshold wind speed, rated power, nominal power and wind power curve. 4.3 Types of wind power plant: small and large wind turbine, Horizontal and vertical axis, constant and variable speed, geared, direct drive and semi geared (hybrid) 4.4 Major parts and function of WPP: Rotor blades, hub, nacelle, tower, electric substation, nacelle layout of geared turbine, main shaft, electric generators, electronic control panel. 4.5 Rotation Principle: Lift and Drag principle, thrust and torque of wind turbine rotor. 	
TSO 5.1 Explain the working principle of SWT. TSO.5.2 Explain the working principle of electric generators used in SWT. TSO.5.3. Describe the SWT tower features. TSO.5.4 Describe the maintenance procedure of small wind turbine. TSO.5.5 Describe the maintenance procedure of given type of fault in SWT.	 Unit-5.0 Working of small wind turbines (SWT) 5.1 Working of SWTs. 5.2 Electric generators in SWTs: permanent magnet synchronous generators, induction generators. 5.3 SWT towers: lattice tubular type, hydraulic towers, ladders, cables. 5.4 Maintenance of small wind turbine: Installation of different types of small wind turbines (SWT). Preventive maintenance of SWT components. Common mechanical faults in SWTs. Common electrical faults in SWTs. 	CO5

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2420502

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1. 1.Test the solar cell	1.	Testing of solar cell available in the laboratory	CO1
LSO 1. 2.Test the performance of PV cell, PV module and PV panel	2.	V-I characteristics of a PV cell, module and Panel.	CO1
LSO 1. 3. Connect the solar panels in series and parallel	3.	Series and parallel connection of solar cell.	CO1
LSO 1. 4.Test the battery for its performance	4.	Testing of batteries on No load and with load	CO1
LSO 1. 5. Connect solar panels for the desired load.	5.	Preparation of a solar PV array for 100 watt load using available panels.	CO1
LSO 1. 6.Connect solar inverter with solar PV system	6.	Connection of solar inverter with solar PV system.	CO1
LSO 1. 7.Install PV panel with battery for a given load	7.	Installation of PV panel with battery for a given load	CO1
LSO 1. 8.Install PV panel without battery for a given load	8.	Installing PV panel without battery for a given load	CO1
LSO 2.1. Dismantle solar cooker	9.	Dismantling solar cooker (Box type, Dish type and heat transfer type).	C02
LSO 2.2. Assemble solar cooker.	10.	Assembling solar cooker (Box type, Dish type and heat transfer type).	CO2
LSO 3.1. Draw the graph different speed and power for small wind power plant	11.	Tabulation of different speed and power for small wind power plant.	CO3
LSO 3.2. Measure of different wind speed using anemometer.	12.	Measurement of different wind speed using anemometer.	CO3
LSO 3.3. Explain the installation of monitoring station.	13.	Do the installation of monitoring station.	C03
LSO 4.1 Identify given parts of wind power plants	14.	Identification of given parts of wind power plants.	CO4
LSO 4.2 Identify specified parts inside the nacelle of small wind power plants	15.	Identification of specified parts inside the nacelle of small wind power plants.	CO4
LSO 5.1 Check the performance of PMSG.	16.	Test the performance of PMSG.	C05
LSO 5.2 Check the performance of Induction generator	17.	Test the performance of Induction generator.	C05
LSO 5.3 Simulate of mechanical faults in SWTs	18.	Simulation of mechanical faults in SWTs.	C05
LSO 5.4 Simulate of Electrical faults in SWTs.	19.	Simulation of Electrical faults in SWTs	C05
LSO 5.5 Maintain of small power wind turbine.	20.	Maintenance of small power wind turbine.	C05

L) Suggested Term Work and Self-Learning: S2420502 Some sample suggested assignments, micro project and other activities are mentioned here for reference.

Semester- V

- **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - 1. Carry out internet survey and prepare a report on installed capacity of solar and wind energy in India.
 - 2. Carry out internet survey and prepare a report showing manufacturers of wind turbine and blades separately in India.
 - 3. Carry out internet survey and prepare a report on material used to manufacturing solar panels.

b. Micro Projects:

- i. Prepare a report on use of solar energy for various domestic and commercial applications.
- ii. Prepare a report to address the maintenance of a solar power plant.
- iii. Prepare a Case study to address the issues related to site selection of a wind power plant.

c. Other Activities:

1. Seminar Topics:

- Material used in manufacturing of solar PV Panels.
- Batteries used in Solar PV system.
- Global and Indian statistics of wind power.
- Generators used in wind turbine.

2. Survey

- Prepare a survey report on solar power plant capacity available in Bihar.
- Prepare a survey report on wind power plant capacity available in Bihar.

3. Visit

- Visit to a Solar power plants and submit report on the following aspects: a) Capacity, b) type of panels,
 c) type connections
- Visit to a wind power plant and submit report on the following aspects: a) Capacity, b) type of wind turbine c) types of generator.
- Use Video films/animation films on working of various types of wind power plants
- Use Video films/animation films on working of various types of solar power plants

d. Self-Learning Topics:

- Power electronics converter.
- Integration with smart grid.
- Hybrid power generation systems.
- Automatic control (SCADA and Vibration based).
- Hybrid solar and wind energy systems.
- http://www.windpowerwiki.dk/
- http://learn.kidwind.org/teach

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix									
	Theory Asses	sment (TA)**	Term W	ork Assessn	nent (TWA)	Lab Assess	ment (LA)#			
COs	Progressive Theory Assessment (PTA)	Term Work & Self Learning	Assessment			Progressive Lab Assessment	End Laboratory Assessment			
	Class/Mid	Assessment	Assignments	Micro	Other	(PLA)	(ELA)			
	Sem Test			Projects	Activities*					
CO-1	20%	20%	20%	20%	33%	20%	20%			
CO-2	20%	20%	20%	20%	33%	25%	20%			
CO-3	20%	20%	20%	20%	34%	20%	20%			
CO-4	25%	25%	20%	20%		20%	20%			
CO-5	15%	15%	20%	20%		15%	20%			
Total	30	70	20 20 10		20	30				
Marks				50						

Legend:

- *: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.
- **: Mentioned under point- (N)
- #: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Fitle and Number Total Relevant Total ETA (Marks)				ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit1.0 The Solar PV Systems	8	CO1	14	4	5	5
Unit2.0 Solar Thermal Systems	12	CO2	15	4	5	6
Unit3.0 Wind Resource Assessment	10	CO3	15	4	5	6
Unit 4.0 Wind Power Systems	10	CO4	16	5	5	6
Unit 5.0 Working of Small Wind Turbines (SWT)	8	CO5	10	3	3	4
Total Marks	48	-	70	20	23	27

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant	PLA/ELA			
S.	Laboratory Practical Titles	COs	Perfor	Viva-		
No.	Laboratory Fractical Titles	Number(s)	PRA	PDA	Voce	
		ivallibel(3)	(%)	(%)	(%)	
1.	Testing of solar cell available in the laboratory	CO1	50	40	10	
2.	V-I characteristics of a PV cell, module and Panel.	CO1	50	40	10	
3.	Series and parallel connection of solar cell.	CO1	50	40	10	
4.	Testing of batteries on No load and with load	CO1	50	40	10	
5.	Measurement of open circuit and short circuit voltage and current of solar PV cell.	CO1	50	40	10	
6.	Preparation of a solar PV array for 100 watt load using available panels.	CO1	50	40	10	
7.	Connection of solar inverter with solar PV system.	CO1	50	40	10	
8.	Installation of PV panel with battery for a given load	CO2	50	40	10	
9.	Installing PV panel without battery for a given load	CO2	50	40	10	
10.	Dismantling solar cooker (Box type, Dish type and heat transfer type).	CO2	50	40	10	
11.	Assembling solar cooker (Box type, Dish type and heat transfer type).	CO2	50	40	10	
12.	Tabulation of different speed and power for small wind power plant.	CO3	50	40	10	
13.	Measurement of different wind speed using anemometer.	CO3	50	40	10	
14.	Do the installation of monitoring station.	C03	50	40	10	
15.	Identification of given parts of wind power plants.	CO4	50	40	10	
16.	Identification of specified parts inside the nacelle of small wind power plants.	CO4	50	40	10	
17.	Test the performance of PMSG.	C05	50	40	10	
18.	Test the performance of Induction generator.	C05	50	40	10	
19.	Simulation of mechanical faults in SWTs.	C05	50	40	10	
20.	Simulation of Electrical faults in SWTs	C05	50	40	10	
21.	Maintenance of small power wind turbine.	C05	50	40	10	

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note:

This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Planetary Gearbox: Matching with 30/50/100/ 250 kW wind turbine second hand or new: 5 Nos	30/50/100/ 250 kW	1-18
2.	GFRP Wind Turbine blades: suitable for 10kW Wind turbines: 12 Nos	10kW	1-18
3.	3-bladed Geared Wind Turbine: 5/10/20/30 kW, Upwind with 20/30 m hydraulically operated tilt-up/tilt-down tubular tower or whichever lowest rating that is available in the market - 1 No.	5/10/20/30 kW	1-18
4.	Concentrated Solar Power (CSP) system - 5/10/20/30 kW or whichever lowest rating that is available in the market	5/10/20/30 kW	1-18
5.	Polycrystalline solar PV module: 10/20/30/30 or 50 W module or whichever lowest rating that is available in the market - 5 Nos. or whichever lowest rating that is available in the market - 5 Nos.	10/20/30/30	
6.	Wind (1kW) - Solar PV (1kW) Hybrid System complete in all aspects - 1 set	1kW	1, 6
7.	Non-motorised solar PV tracking systems -	200/300 or 500 W	14

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.			
1.	Wind Power Technology	Earnest, Joshua	PHI Learning, New Delhi, 2014
			ISBN-13. 978-9388028493
2.	Solar Photovoltaic: A Lab Training Module	Solanki, Chetan Singh, Arora,	Cambridge University Press, New Delhi,
		Brij M., Vasi Juzer, Patil,	2009, ISBN- 9789382993254
		Mahesh B.	
3.	Solar Photovoltaic: Fundamentals,	r Photovoltaic: Fundamentals, Solanki, Chetan Singh	
	Technologies and Application		ISBN-10: 9788120351110
			ISBN-13: 978-8120351110
4.	Wind Power Plants and Project	Earnest, Joshua and Wizelius,	PHI Learning, New Delhi, 2011
	Development	Tore	ISBN-10: 8120351274
			ISBN-13: 978-8120351271

Diploma in Electrical Engineering		Sem	ester-	V		SBTE, Bihar		
		Introduction to Photovoltaics	10	hn D	Palfour	Michael I	Janas & Partlett Publishers 2012	

ĺ	5.	Introduction to Photovoltaics	John R. Balfour, Michael L.	Jones & Bartlett Publishers, 2012,
			Shaw, Sharlave Jarosek	ISBN: 1449624731, 9781449624736

(b) Open Educational Resources:

- https://onlinecourses.nptel.ac.in/noc20_ee64/preview
- https://archive.nptel.ac.in/courses/108/108/108108076/
- https://nptel.ac.in/courses/122106025

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Lab Manuals

A) Course Code : 2420503(T2420503/P2420503/S2420503)

B) Course Title : Energy Conservation and Audit

C) Pre- requisite Course(s) : Electric power generation, AC Machine/ Fundamentals of electrical

system

D) Rationale :

Energy conservation is saving the energy not compromising with the comfort of life. Energy audit is providing an effective solution for <u>energy conservation</u> which provides vital information base for overall energy conservation program. While the installed capacity of both conventional and Renewable energy in India in 2023 is 425 GW including fossil and non-fossil (Renewable energy) fuel and the country has a target of 777 GW by 2030. It is also targeted that 50% of electricity generation capacity from non-fossil sources by 2030. Conserving the energy, improving energy efficiency may be viewed as a new source of energy, which is clean, having little investment and short payback period.

This course will enable the diploma students to develop the skill set in cognitive, psychomotor and affective domain in the aspects of energy conservation policy of India, government initiatives, energy conservation measures/techniques in lighting system, electrical motors, transformers, in transmission and distribution system. It also deals with relation between Tariff and Energy conservation; Energy conservation by co-generation and at last Energy conservation equipment and energy audit procedures.

After completion of the course, the students will be able to-

CO-1 Interpret energy conservation policies and government initiatives in India

CO-2 Implement energy conservation techniques in electrical machines and drives

CO-3 Apply <u>energy conservation techniques</u> in electrical installation Systems.

CO-4 Use Co-generation and relevant tariff for reducing energy bill.

CO-5 Carryout energy audit for a given electrical system

F) Suggested Course Articulation Matrix (CAM):

Programme Outcomes(POs) Course								Programme Specific Outcomes* (PSOs)	
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2
CO-1	3	1	1	-	2	-	1		
CO-2	3	2	2	1	2	-	1		
CO-3	3	3	3	2	2	-	1		
CO-4	3	3	3	2	2	-	1		
CO-5	3	2	2	3	2	3	1		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)							
Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	Т						
2420503	Energy Conservation and Audit	02	-	01	02	05	04		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			А	ssessment S	cheme (Mai	·ks)		
		Theory Ass (TA		Self-Le	Work & earning sment	Lab Asse (L	essment A)	(TA+TWA+LA)
				(TV	NA)			1+1
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+
2420503	Energy Conservation and Audit	30	70	10	15	10	15	150

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments,

seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2420503

	Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
TSO 1a.	Write the energy scenario of conventional and non-conventional energy sources in India as on date.	Unit-1.0 Energy Conservation Basics 1.1 Energy Scenario: Primary and Secondary energy	CO1
TSO 1b.	Describe briefly energy conservation initiatives by Government of India	sources, Energy demand and supply, National scenario of energy generation of both conventional and non-conventional energy	
TSO 1c.	Explain the concept of Energy conservation, energy audit and salient features of Energy conservation act 2001.	1.2 Difference between Energy conservation and energy efficiency with examples.1.3 Energy conservation Policy in India1.4 Energy conservation initiatives by Gol:	
TSO 1d.	Differentiate between energy conservation and energy efficiency. Give one example for each.	[i] Standards and Labelling[ii] Energy Conservation Building Codes (ECBC)[iii] Promotion of Energy Efficient LED Bulbs	
TSO 1e.	Describe the role of Bureau of Energy Efficiency (BEE) and	[iv] Promotion of Electric Vehicle 1.5 Energy conservation and Energy audit;concepts	
TSO 1f.	Describe the role of Bihar Renewable Energy Development Agency (BREDA)	and difference. 1.6 Energy Conservation Act 2001; relevant clauses of energy	
TSO 1g.	Interpret the Star Labeling of the given electrical equipment.	conservation 1.7 BEE/BREDA, NPC, MNRE and its Roles	
TSO 1h.	Choose the mandatory and voluntary appliances from the given list of various star labelled appliances	1.8 Star Labeling: Need and its benefits, Mandatory and voluntary appliances	
TSO 2a.	Describe briefly the energy conservation techniques in an induction motor	Unit-2.0 Energy Conservation in Electrical Machines 2.1 Energy conservation techniques in induction	CO2, CO1
TSO 2b.	Describe the significant features of energy efficient motors listing their advantages and limitations.	motor: a) Improving Power quality. b) Motor survey	
TSO 2c.	Describe briefly the energy conservation techniques in a Transformer	c) Matching motor with loading.d) Minimizing the idle and redundant running of motor.	
TSO 2d.	Describe the significant features of the given energy efficient transformer, listing their advantages and limitations	e) Operating in star mode. f) Rewinding of motor. g) Replacement by energy efficient motor- significant features, advantages, applications	
TSO 2e.	Describe the significant features of a given energy efficient Transformer, listing their advantages and limitations	and limitations. h) Periodic maintenance 2.2. Energy conservation techniques in Transformer a) Load sharing	

Majo	r Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
TSO 2f.	Describe briefly the use of a given energy conservation equipment in a given electrical system	b) Parallel operation c) Isolating techniques d) Replacement by energy efficient transformers- Amorphous transformers; Epoxy Resin cast transformer and Dry type of transformer. e) Periodic maintenance 2.3 Energy Conservation Equipment: a) Soft starters b) Automatic star delta convertor c) Variable Frequency Drives d) Automatic p. f. controller (APFC) e) Intelligent p. f. controller (IPFC) f) Active Harmonic filters (AHF).	
TSO 3a.	Explain the aggregated technical and commercial losses in the power	Unit-3.0 Energy Conservation in Electrical Installation Systems	CO3, CO2
TSO 3c.	Describe the scenario of power system at the national/state level. Describe briefly the methods to reduce the specified technical losses in the electrical installation Describe the strategies to reduce the specified commercial losses in the power system Describe the criteria for Selecting the relevant energy conservation instruments for the given system with justification Describe the given energy conservation techniques for the specified lighting installation.	 3.1 Aggregated Technical and commercial losses (ATC); Power system at state, regional, national level. 3.2 Technical losses-Causes and measures to reduce by a) Controlling I²R losses. b) Optimizing distribution voltage c) Balancing phase currents d) Compensating reactive power flow 3.3 Commercial losses: causes and remedies 3.4 Energy conservation instruments: a) Maximum Demand Controller, b) kVAR Controller, c) Automatic Power Factor controller (APFC). d) Intelligent p. f. controller (IPFC) 3.5 Energy Conservation in Lighting System: a) Relamping with energy efficient LED lamps. b) Using energy efficient luminaries c) Improving lighting controls- infrared sensors, automatic timers, motion sensors (PIR and ultrasonic sensors), and dimmers, Smart control d) Centralized street light control - GSM/GPRS based systems and SCADA system e) Replacing energy inefficient accessories with 	
TSO 4b.	Describe the need and significance of co generation system Identify the cogeneration system for the given facility. Describe the given type of Cogeneration with the help of a neat sketch.	e) Replacing energy inefficient accessories with new energy efficient fixtures and ballast f) Installation of separate transformer servo stabilizer for lighting. g) Periodic survey and adequate maintenance programs. Unit-4.0 Energy Conservation through Cogeneration and Tariff 4.1 Co-generation and its significance 4.2 Types of Cogeneration: a) On the basis of sequence of energy use - Topping cycle - Bottoming cycle b) On the basis of technology	CO3, CO4

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
TSO 4d. Describe the tariff system for reducing the electricity bill.	- Steam turbine Cogeneration - Gas turbine cogeneration - Reciprocating engine Cogeneration 4.3 Factors governing the selection of cogeneration system. 4.4 Advantages of cogeneration. 4.5 Tariff and Types of tariff structure: - LT and HT Tariff - Special tariffs - Time-off-day tariff - Peak- off-day tariff - Power factor tariff - Maximum Demand tariff - Load factor tariff and - Availability Based Tariff (ABT). 4.6 Application of tariff system to reduce energy bill. 4.7 Recent BSPHCL tariffs for different consumers.	
TSO 5a. Define energy audit justifying its need and significance	Unit-5.0 Energy Audit of Electrical Systems	CO4, CO5
 TSO 5b. List different types of energy audit TSO 5c. Describe the use of relevant energy audit instruments for the specified energy audit with examples TSO 5d. Develop questionaries for energy audit of the projects TSO 5e. Develop the energy flow diagram of the given facility/ apparatus. TSO 5f. Calculate the Simple Pay Back period' for the given situation. 	 5.1 Energy audit (definition as per Energy Conservation act), need and significance in energy consumption pattern 5.2 Types of energy audit 5.3 Energy audit instruments and their use 5.4 Questionnaire for energy audit projects 5.5 Energy flow diagram (Sankey diagram) 5.6 Simple payback period, 5.7 Procedure of Energy Audit (walk through audit and detailedaudit). 5.8 Energy Audit report format. 	
TSO 5g. Prepare the energy auditreport for the given facility/apparatus.		

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2420503

Practio	cal/Lab Session Outcomes (LSOs)	S. No	Laboratory Experiment/Practical Titles	Relevant COs Number(s)	
LSO 1.1.	Identify star labelled appliances and compare them for various star ratings	1.	Identification of Star labelled electrical appliances and compare data sheets of various star ratings	CO1	
LSO 1.2.	List the significance of star ratings				
LSO 2.1.	Implement energy conservation techniques in a 3-phase induction motor	2.	2.	Determination of reduction in power consumption in star mode operation of 3 phase Induction motor compared to delta	CO2
LSO 2.2.	Identify the effect of voltage reduction on motor performance and energy consumption		mode		

Practical/Lab Session Outcomes (LSOs)	S. No	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 3.1. Identify the power factor improvement strategies by APFC	3.	Use of APFC unit for improvement of p. f. of electrical load.	CO2, CO3
LSO 4.1. Identify the power factor improvement strategies by IPFC	4.	Use of IPFC unit for improvement of p. f. of electrical load.	CO2, CO3
LSO 5.1. Compare power consumption of different types of TL with choke, electronic ballast and LED lamps by direct measurements	5.	Comparison of power consumption of different types of TL with choke, electronic ballast and LED lamps by direct measurements	CO3
LSO 6.1. Determine the reduction in power consumption by replacement of different lamps in a class room / laboratory by energy efficient lamps	6.	Comparison of reduction in power consumption by replacement of different lamps in a class room / laboratory by energy efficient lamps	CO3
LSO 7.1. Suggest suitable tariff for energy conservation and reduction of energy bill for an industrial customer	7.	Tariff for industrial consumer for reducing the electricity bill	CO3
LSO 7.2. Interpreting electricity bill of an industrial consumer			
LSO 8.1. Suggest suitable tariff for energy conservation and reduction of energy bill for a commercial customer	8.	Tariff for commercial consumer for reducing the electricity bill	CO3
LSO 8.2. Interpreting electricity bill of a commercial customer			
LSO 9.1. Suggest suitable tariff for energy conservation and reduction of energy bill for a residential customer LSO 9.2. Interpreting electricity bill of a residential customer	9.	Ttariff for residential consumer for reducing the electricity bill	CO3, CO4
LSO 10.1. Estimate energy saving by improving power factor and load factor for given case	10.	Energy saving by improving power factor and load factor for given case	CO3
LSO 11.1. Prepare a sample energy audit questionnaire for a given facility	11.	Energy audit questionnaire for the given facility.	CO5
LSO 12.1. Prepare energy audit report of your electrical department.	12.	Energy audit report of electrical department	CO5

L) Suggested Term Work and Self Learning: \$2420503 Some sample suggested assignments, micro project and other activities are mentioned here for reference.

a. Assignments:

- i. Compare the energy conserved by an energy efficient motor with a standard motor and prepare a report.
- ii. Carry out internet survey (BEE) to collect information and prepare a report related to any 2 Energy conservation projects.
- iii. Collect the catalogues of various star labeled equipment's and prepare a report on it.
- iv. Write report on performance of motor after rewinding.
- v. Compile the energy saved in at least 5 star labeled consumer appliances and prepare a report.
- vi. Prepare a report on special features of energy efficient transformers.
- vii. Collect information about energy efficient luminaries and prepare a report on it.
- viii. Compare the energy conserved in different types of lamps and prepare a report.
- ix. Visit a facility adopting cogeneration system and prepare a presentation.

- x. Prepare a report on maintenance procedure followed for improving efficiency of a given lighting scheme.
- xi. Prepare a energy audit report of your department/Institute.

b. Micro Projects:

- 1. Prepare Energy conservation chart using different luminaries in your classroom/house
- 2. Compare Energy conservation for using energy efficient motor to conventional motor.
- 3. Collect electricity bill of your institute and suggest suitable measures for energy conservation and reduction of energy bill.
- 4. Prepare a detailed report for energy conservation by energy audit instruments of your institute.
- 5. Prepare report on latest **energy conservation** policies of Bihar state.
- 6. Estimate the payback period, depreciation cost, for the given energy saving equipment in the transmission and distribution system.
- 7. Analyze the energy conservation act 2003 from IEA and prepare a brief summary.
- 8. Analyze ISO 50001- <u>energy management systems</u> standard and prepare a report on how it can
 - Work as a system to enhance energy efficiency.
- 9. Carry out a case study of at least two nearby industries on <u>energy conservation measures</u> adopted by them.

c. Other Activities:

- 1. Seminar Topics:
 - Energy conservation act 2001
 - Energy conservation equipment
 - Cogeneration and its advantages in energy conservation
 - "Bachat Lamp Yojana" Scheme.
 - Energy Audit instruments and their working.
- 2. Visits: Visit to your nearby market/shop for Identifying star labeled electrical apparatus and compare the data for various star ratings. Prepare a chart and submit the report
- 3. Visit nearby industry which has a captive power plant and observe the working of Captive power plant its inputs and outputs . Prepare a report and submit with the main focus on energy saved due to captive power plant
- 4. Self-Learning Topics:
 - Captive Power Plant
 - Demand side management
 - Green buildings
 - Ancillary services in Power system.
 - Energy conservation initiatives in <u>Agricultural sector</u>.

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate **CO** attainment.

	Course Evaluation Matrix								
	Theory Assessment (TA)**		Term Work Assessment (TWA)			Lab Assessment (LA)#			
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Work & Self Learning Assessment			Progressive Lab Assessment	End Laboratory Assessment		
	Class/Mid		Assignment	Micro	Other	(PLA)	(ELA)		
	Sem Test		s	Projects	Activities*	(7	(== -,		
CO-1	15%	15%	10%	-	15%	20%	20%		
CO-2	20%	20%	30%	25%	20%	10%	20%		
CO-3	25%	25%	20%	25%	25%	15%	20%		
CO-4	25%	25%	30%	25%	25%	15%	20%		
CO-5	15%	15%	10%	25%	15%	40%	20%		
Total	30	70	20 20 10		20	30			
Marks			50						

Legend:

- *: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.
- **: Mentioned under point- (N) #: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs
 mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number Total		Relevant	Total	ETA (Marks)			
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0 Energy Conservation Basics	6	CO1	10	4	2	4	
Unit-2.0 Energy Conservation in Electrical Machines	12	CO1, CO2	14	4	4	6	
Unit-3.0 Energy Conservation in Electrical Installation Systems	12	CO3, CO4	18	4	6	8	
Unit-4.0 Energy Conservation through Cogeneration and Tariff	10	CO3, CO4	18	4	6	8	
Unit-5.0 Energy Audit of Electrical Systems	8	CO1, CO5	10	4	2	4	
Total	48	-	70	20	20	30	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

			P		
		Relevant	Performance		Viva
S.	Laboratory Practical Titles	COs	PRA*	PDA**	-
No.	Laboratory Fractical Titles	Number(s)	(%)	(%)	Voc
		(S)			e (%)
1.	Identification of star labelled electrical appliances and compare data sheets of various star ratings	CO1	45	45	10
2.	Determination of reduction in power consumption in star mode operation of 3 phase Induction motor compared to delta mode	CO2	45	45	10
3.	Use of APFC unit for improvement of p. f. of electrical load.	CO2	45	45	10
4.	Use of IPFC unit for improvement of p. f. of electrical load.	CO3	45	45	10
5.	Comparison of power consumption of different types of TL with choke, electronic ballast and LED lamps by direct measurements	CO3, CO4	45	45	10
6.	Comparison of reduction in power consumption by replacement of different lamps in a class room / laboratory by energy efficient lamps	CO4, CO5	45	45	10
7.	Tariff for industrial consumer for reducing the electricity bill	CO4, CO5	45	45	10
8.	Tariff for commercial consumer for reducing the electricity bill	CO4, CO5	45	45	10
9.	Tariff for residential consumer for reducing the electricity bill	CO4, CO5	45	45	10
10.	Energy saving by improving power factor and load factor for given case	CO5	45	45	10
11.	Energy audit questionnaire for the given facility.	CO5	45	45	10

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Induction motor	Single phase/three phase	2,3

S. Name of Equipment,		Broad	Relevant
No.	Tools and Software	Specifications	Experiment/Practical
			Number
2.	Ammeters	MI type, AC/ DC 0-5-10Amp	2,3
3.	Voltmeter	MI type, AC/DC, 0-150/300V, 0-250/500V	2,3
4.	Wattmeter	Single phase/three phase, single element/double element, 2.5/5Amp -5/10 Amp, 200/400V -250/500V	2,3,5,6,7
5.	Three phase Power factor meters	AC, 415V, 50 Hz, 5-10 Amp	1,9
6.	Low power factor wattmeter	Single phase, 5/10Amp, 250/500V	4
7.	Automatic power factor controller	-	3
8.	Star delta convertor	-	2
9.	Lux meter	-	5,11

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Energy Conservation and Audit	M.A. Chaudhari , S. M. Chaudhari , S.A. Asarkar	Nirali Prakashan , 978-9388897860
2.	Energy Conservation	Diwan Parag	Pentagon Press ISBN: 9788182743502, 9788182743502
3.	Energy Conservation and Audit	K.V.Sharma , P. Venkataseshaiah	I K International Publishing House Pvt. Ltd, 978-9381141298
4.	Energy Conservation and Audit	Er. Udit Mamodiya	Ashirwad Publication, 9788194250692
5.	Energy Management	Sanjeev Singh, Umesh Rathore,	S K Kataria&Sons,New Delhi ISBN-13: 9789350141014

(b) Online Educational Resources:

- 1) https://powermin.gov.in/
- 2) https://beeindia.gov.in/en
- 3) https://akshayurja.gov.in/res/renw-all-india-cp
- 4) https://www.eia.gov/totalenergy/
- 5) https://www.energy.gov/energysaver/articles/8-online-tools-help-save-energy-and-money
- 6) https://www.iiec.org/
- 7) www.greenbusiness.com
- 8) www.breda.bih.nic.in
- 9) Home page Central Electricity Authority (cea.nic.in)

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Handbook on Energy audit and environment management by Y.P. Abbi, TERI press
- 2. BEE User manual for energy conservation
- 3. MNRE websites
- 4. Ministry of Power website for global/country/state power scenario

Semester- V

A) Course Code : 2400504B/P2400504B/S2400504B)

B) Course Title : Artificial Intelligence (Basic)

C) Pre- requisite Course(s) :
D) Rationale :

Artificial intelligence is the theory and development of computer systems able to perform tasks such as, visual perception, speech recognition, decision-making etc. normally requiring human intelligence. Data analytics gives the basis of developing any artificial intelligence system.

The Python programming language is one of the most accessible programming languages, has several modules to write programs to solve Artificial Intelligence, Machine Learning, Data Analysis problems. Moreover, it has simplified syntax and versatile data structures and functions to speed up the code writing efficiently.

This course provides the basics for Artificial Intelligence problem solving techniques, data analytics and articulates the different dimensions of these areas. This course also provides the students the foundations for data analytics with python. The course explains data science techniques and the various Python programming packages required to prepare data for analysis, perform data analytics and create meaningful data visualization.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Elaborate the use of Artificial Intelligence for the problem solving as Technological driver.
- **CO-2** Write Python Programmes for solving problems.
- CO-3 Analyze given data by using NumPy package of Python.
- **CO-4** Analyze given data by using Pandas package of Python.**CO-**
- 5 Visualize given data set using Matplotlib.

F) Suggested Course Articulation Matrix (CAM):

Course	Programme Outcomes(POs)								Programme Specific Outcomes* (PSOs)	
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO- 1	PSO- 2	
(COs)	Basic and	Problem	Design/	Engineering	Engineering	Project	Life			
	Discipline	Analysis	Development	Tools	Practices for	Management	Long			
	Specific		of Solutions		Society,		Learning			
	Knowledge				Sustainability					
					and					
					Environment					
CO-1	-	2	2	-	-	ı	1			
CO-2	-	3	3	3	ı	•	2			
CO-3	-	3	3	3	ı	•	2			
CO-4	-	2	3	3	-	-	2			
CO-5	-	3	3	3	-	-	2			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

		Scheme of Study (Hours/Week)						
Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction	Notional Hours	Total Hours	Total Credits	
		L	Т	(LI)	(TW+ SL)	(CI+LI+TW+SL)	(C)	
2400504B	Artificial Intelligence (Basics)	03	-	04	02	09	06	

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

Course Code		Assessment Scheme (Marks)							
		Theory Assessment (TA)		Term Work & Self- Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)	
	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+	
2400504B	Artificial Intelligence (Basics)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400504B

Major Theory Session Outcomes (TSOs)	Units	Relevant
		COs Number
		(s)
TSO 1a. Elaborate the use of Artificial Intelligence TSO 1b. Explain various technological Drivers of	Unit-1.0. Artificial Intelligence	CO-1
Modern Al TSO 1c. Describe Knowledge representation TSO 1d. Classify Intelligent agents TSO 1e. List the characteristics of agents TSO 1f. Apply various search strategies for problem solving	Artificial Intelligence: What is AI?, Types of AI, History of AI, Turing Test, Symbol Systems and the scope of Symbolic AI, Structure of AI, Goals of AI, Importance of AI, Techniques used in AI, Perception, Understanding and Action, Technological drivers of modern AI Knowledge: Definition, Knowledge Representation, objectives andrequirements, practical aspects of representation, Components Intelligent Agents: Agents and Environments, Properties of environments, characteristics of agents, classification of agents Problem Solving: Problem Formulation, Goal Formulation, State Space Search, Search Problem, Basic search algorithm, Search Tree, Search strategies—Uninformed and informed search, Breadth FirstSearch, Depth FirstSearch, Best FirstSearch, Constraint Satisfaction	
	Problem (CSP), Back tracking Search.Problem Definitions: N Queen Problem, 8Puzzle Problem, Tic-tac-Toe.	
TSO 2a. Explain Python tokens and variables TSO 2b. Use the concept of I-value and r -value TSO 2c. Write python program using various data types TSO 2d. Write Program using various operators in Python TSO 2e. Write program using conditional statements TSO 2f. Use various string functions for problem solving in python program TSO 2g. Write programmes using various operations on list TSO 2h. Write programmes by using various operations on Tuples and Dictionary TSO 2i. Create user defined functions TSO 2j. Write python programmes using built- in functions TSO 2k. Describe the procedure to import module in the Python TSO 2l. Describe procedure to Import Library and functions in the Python TSO 2m. Write program using Iterative statements.	Python character set, Python tokens, variables, concept of I-value and r-value, use of comments. Data types: number (integer, floating point, complex), boolean, sequence (string, list, tuple), none, mapping (dictionary), mutable and immutable data types Operators: arithmetic operators, relational operators, logical operators, assignment operator, augmented assignment operators. Expressions, statement, typeconversion & input/output: precedence of operators, expression, evaluation of expression. Conditional and Iterative statements: if, if-else, if-elif-else, for loop, range function, while loop, break and continue statements, nested loops String, List, Tuples and Dictionary: String: indexing, string operations (concatenation, repetition, membership & slicing), traversing a	CO-2

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
	string using loops, built-in functions. Lists: introduction, indexing, list operations (concatenation, repetition, membership & slicing), traversing a list using loops, built- in functions, linear search on list of numbers and counting the frequency of elements in a list Dictionary: accessing items in a dictionary using keys, mutability of dictionary (adding a new item, modifying an existing item), traversing a dictionary, built-in functions Python Functions: types of function (built- in functions, functions defined in module, user defined function, arguments and parameters, default parameters, positionalparameters, function returning value(s), flow of execution, scope of a variable (global scope, local scope) Modules and Packages: Importing module using 'import' Regular Expressions, Exception Handling, PyPI Python PackageIndex, Pip	
TSO 3a. Explain Data Analytics and its elements TSO 3b. Differentiate Data Analysis and Data	Python package manager, Importing Libraries and Functions Unit-3.0 Data Analytics and Computing with NumPy	CO-3
Analytics TSO 3c. Explain the use of open source data TSO 3d. Differentiate Qualitative and Quantitative data analysis TSO 3e. Explain procedure to Install NumPy Library TSO 3f. Use NumPy library to perform various operations and functions on array TSO 3g. Write Programs using NumPy for array manipulations	Data Analytics: Data, Types of Data, Importance of Data, Data Analysis Vs Data Analytics, Types of Data Analytics, Elements of Analytics, Data Analysis Process, Qualitative and Quantitative analyses, Open Source Data. NumPy Library: Introduction, Installation, Ndarray: creating an array, intrinsic creation of an array, Data types, basic operations, aggregate functions, Indexing, slicing, Iterating, Conditions and Booleanarrays, Array manipulation: Joining, splitting, shape changing, sorting, Structured arrays, Reading and Writing array data on a File.	
TSO 4a. Apply Pandas data structure for data analysis	Unit-4.0 Data Analysis with Pandas	CO-4
TSO 4b. Write Programs using Pandas to perform various operations and functions on series. TSO 4c. Perform various operation in a Data Frame columns and rows TSO 4d. Write Programme to read and write on CSV, XLS and Text data files TSO 4e. Apply various data cleaning operations and prepare data.	values, operations, mathematical functions, evaluating values, handling missing data,	

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
	Combining, Data aggregation and Grouping.	
TSO 5a. Illustrate the use of Matplotlib and PyPlot package for showing plots and images	Unit-5.0 Data Visualization with Matplotlib	CO-5
TSO 5b. Customize plots with Colors, Markers, Line Styles, Limits, Tics, Labels, Legends, Grids TSO 5c. Differentiate various charts based on their applications	Data Visualization: Introduction to Matplotlib ,PyPlot package, Figures and Subplots, showing plots and images Customizing Plots: Colors, Markers, Line Styles, Limits, Tics, Labels, Legends, Grids, Annotating with text, Matplotlib	
	Configuration Chart types: Line, Bar, stacked bar, Box plots, pie chart , Histogram and Densityplots, Scatter plot, Saving Plots to a file,	
	Close and clear plots.	

 $\textbf{Note:} \ \mathsf{One} \ \mathsf{major} \ \mathsf{TSO} \ \mathsf{may} \ \mathsf{require} \ \mathsf{more} \ \mathsf{than} \ \mathsf{one} \ \mathsf{Theory} \ \mathsf{session/Period}.$

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504B

Practical/ Lab SessionOutcomes (LSOs)	l ahoratory Eyneriment/Practical Litles		Relevant COs Number (s)
LSO 1.1 Use various data types and operators to solve given problem LSO 1.2 Use conditional and iterative statements for solving given problem	1	 Conditional and Iterative statements 1a. Write a program to generate randomnumbers between 5 and 10. 1b. Write a program to find the square root of a number. 1c. Write a python program to check if a numberis positive, negative or 0. 1d. Write Python program to print all primenumbers between 0-50. 	CO-2
LSO 2.1 Use string functions for performing various string operations	2	 String Handling 2a. Write a Programme that asks the user for astring with only single space between words, and return number of words in thestring. 2b. Write a Program that inputs a line of textand print the count of Vowels in it. 2c. Write a Program that inputs a line of text andprint the biggest word in it. 2d. Write a Program that inputs a line of textand print a new line of text where each word of input line is reversed. 	CO-2
LSO 3.1 Use list operations for concatenation, repetition & slicing LSO 3.2 Perform various operation in the Tuples LSO 3.3 Perform various operation in the dictionary	3	List, Tuples and Dictionary 3a. Write a python program to convert a stringto a list. 3b. Write a program to print the largest numberin a list. 3c. Given a tuple pairs = ((3,9), (8,4), (3,7), (24,18)), count the number of pairs (a, b)such that both a and b are odd. 3d. Write a program to input a list of numbers and swap elements at the even location withthe elements at the odd location. 3e. Write a program to merge two dictionaries.	CO-2

Practical/ Lab SessionOutcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)
LSO 4.1 Use built-in functions to solve	4	Python Functions	CO-2
given problem		4a. Write a function to reverse a string.	
LSO 4.2 Create user defined functions to		4b. Write a function to calculate the factorial of a	
solve given problem		number.	
LSO 5.1 use basic data structure using		Basic data structures in NumPy	CO-3
NumPy	5.	5a. Create a List, set, tuple and dictionary whichstores	
		the details of a student (roll no, name, dept,	
LSO 5.2 Convert the list and tuple as		branch, percentage of mark) inPython and print	
NumPy array		the values.	
		5b. Convert the list and tuple as NumPy array.	
LSO 6.1 Create Arrays in Numpy	6	Arrays in NumPy	CO-3
using different intrinsic		6a. Create arrays using different intrinsic methods	
methods		(ones, zeros, arange, linspace, indice) and print	
		their values.	
LSO 6.2 Perform arithmetic		6b. Check the results of arithmetic operations like	
operations and		add(), subtract(), multiply() and divide()with	
mathematical operations		arrays created using arrange and ones intrinsic	
using arrange and ones		method.	
intrinsic method.		6c. Check the results of mathematical operations like	
		exp(), sqrt(), sin(), cos(), log(), dot() on an array	
		created using arrange	
LCO 7.1 Amply aggregate functions on	7	intrinsic method.	
LSO 7.1 Apply aggregate functions on	7	Built-in functions in NumPy.	CO-3
data by using Built-in function s in Numpy		7a. Load your class Mark list data from a csv (comma separated value) file into an array. Perform the	
птишру		following operations to inspect yourarray. Len(),	
		ndim, size, dtype, shape, info()	
		7b. Apply the aggregate functions on this data and	
		print the results. (Functions like min(), max(),	
		cumsum(), mean(), median(), corrcoef(), std())	
LSO 8.1 Handle multiple arrays by	8	Handling Multiple Arrays	CO-3
applying various operations on		8a. Create two python NumPy arrays (boys, girls) each with	
arrays		the age of nstudents in the class.	
·		8b. Get the common items between twopython NumPy	
		arrays.	
		8c. Get the positions where elements of twoarrays match.	
		8d. Remove from one array those items thatexist in	
		another.	
		8e. Extract all numbers between a given rangefrom a NumPy array.	
LSO 9.1 Apply indexing on the given set	9	Indexing in NumPy	CO-3
of data		9a. Load your class Mark list data from a csv fileinto	60 3
0. 44.4		an array.	
		9b. Access the mark of a student in a particular subject	
		using indexing techniques.	
		9c. Select a subset of 2D array using fancyindexing	
		(indexing using integer arrays	
LSO 10.1 Create series using list and	10	Working with a Series using Pandas	CO-4
dictionary in pandas		10a. Create a series using list and dictionary. 10b.	
		Create a series using NumPy functions in	
LSO 10.2 Print different values from		Pandas.	
series.		10c. Print the index and values of series.	
		10d. Print the first and last few rows from the	
		series.	
LSO 11.1 Perform various operation in a	11	Working with Data Frame Rows	CO-4
		11a. Slicing Data Frame using loc and iloc.	

Practical/ Lab SessionOutcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)
		11b. Filter multiple rows using isin. 11c. Select first n rows and last n rows 11d. Select rows randomly n rows and fractionsof rows (use df. sample method) 11e. Count the number of rows with eachunique value of variables 11f. Select nlargest and nsmallest values.11g. Order/sort the rows	
LSO 12.1 Apply different techniques to merge and combine data	12	Merge and combine data 12a. Perform the append, concat and combinefirst operations on Data Frames. 12b. Apply different types of merge on data. 12c. Use a query method to filter Data Frame with multiple conditions.	CO-4
LSO 13.1 Create Linear Plot to identify various relation in the data using Matplotlib LSO 13.2 Create Scatter Plot to identify various relation in the data using Matplotlib	13	Consider the Salary dataset, which contains 30 observations consisting of years of working experience and the annual wage. Download thedata set from https://www.kaggle.com/rohankayan/years-of- experience-and-salary-dataset 13a. Create a linear plot to identify the relationship between years of working experience and the annual wages with suitable title, legend and labels. 13b. Create a scatter plot to identify the relationship between years of working experience and the annual wages with title, legend and labels. 13c. Also distinguish between observations that have more than 5 years of working experience and observations that have lessthan 5 years of working experience by using different colors in one single plot.	CO-5
LSO 14.1 Plot Bar graph by Changing the color of each bar, Change the Edge color, Linewidth and Line style.	14	Consider the Iris dataset, where observations belong to either one of three iris flower classes. Download the data set from https://www.kaggle.com/arshid/iris-flower- dataset 14a. Visualize the average value for each feature of the Set osa iris class using a bar chart. 14b. Format the obtained bar graph by Changingthe color of each bar, Change the Edge color, Line width and Line style.	CO-5

- **L)** Suggested Term Work and Self Learning: S2400504B Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - b. Micro Projects:
 - 1. Handing Two-dimensional array in NumPy Download the data set from

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.datahttps://www.kaggle.com/arshid/iris-flower-dataset

- a. Import iris dataset with numbers and texts keeping the text intact into python NumPy.
- b. Convert the 1D iris to 2D array (iris2d) by omitting the species text field.
- c. Find the number and position of missing values in iris2d's sepal length
- d. Insert np.nan values at 20 random positions in iris 2d dataset
- e. Filter the rows of iris2d that has petal_length> 1.5 and sepal_length< 5.0

Expected Outcome (Use various operations on two dimensional arrays in NumPy)

2. Handling missing data and duplicates in Pandas:

- a. Identify rows with missing data (isnull(), notnull()) and replace NA/Null data with a given value.
- b. Drop rows and columns with any missing data (dropna(), dropna(1))
- c. Find duplicate values and drop duplicates.
- d. Fill the missing values using forward filling and backward filling.
- e. Replace the missing value with new value and write the dataframe to a CSV file in the local directory.

Expected Outcomes (a. Identify missing data, b. Find Duplicates values, c. Write the dataframe to a CSV file in the local directory.)

3. Working with Data Frame Columns:

- a. Create and print a Data Frame.
- b. Find the descriptive statistics for each column.
- c. Group the data by the values in a specified column, values in the index.
- d. Set Index and columns in a Data Frame.
- e. Rename columns and drop columns
- f. Select or filter rows based on values in columns.
- g. Select single and multiple columns with specific names

Expected Outcome (Perform various operation in a Data Frame columns)

4. Indexing & Sorting in NumPy:

- a. Load your class Mark list data from a csv file into an array.
- b. Sort the student details based on Total mark.
- c. Print student details whose total marks is greater than 250 using Boolean indexing.

Expected Outcomes (a. Sort the given set of data, b. Use indexing in an array)

5. Array Slicing in NumPy:

- a. Load your class Mark list data into an array called "marks" to store students roll num, subject marks and result.
- b. Split all rows and all columns except the last column into an array called "features".
- c. Split the marks array into 3 equal-sized sub-arrays each for 3 different subject marks.
- d. Split the last column into an array "label".
- e. Delete the roll num column from the marks array and insert a new column student name in its place.

Expected Outcome (Use array slicing in Numpy for the given set of data)

6. Consider the Iris dataset, where observations belong to either one of three iris flower classes.

Download the data set from

https://www.kaggle.com/arshid/iris-flower-dataset

a. Visualize the Histogram for each feature (Sepal Length, Sepal Width, petal Length & petal Width) separately with suitable bin size and color.

- b. Plot the histograms for all features using subplots to visualize all histograms in one single plot. Save the plot as JPEG file.
- c. Plot the box plots for all features next to each other in one single plot. Perform 3D printing of plastic casing of inhaler used by Asthma patients and estimate the cost.

Expected Outcomes (a. Plot the Histogram for the various features using subplot, b. Plot the box plots for all features next to each other in one single plot)

c. Other Activities:

1. Lab Activities:

- Install Python IDE and important Python Libraries
- Install Anaconda and find the features of Jupyter Notebook.
- Import various module using 'import '
- Use Pip Python package manager.
- Import Libraries and Functions in Python

2. Seminar Topics:

- Technological rivers of modern Artificial Intelligence
- Intelligent Agents and Environments in Artificial Intelligence
- Various Search Strategies
- Python for Data Science
- Python Libraries and Packages used in data Science
- Data Visualization
- Various data set available over Internet

3. Self-Learning Topics:

- Use of AI in Engineering and Technology
- Data Science and Machine Learning
- Problem and Goal Formulation
- Search strategies
- Breadth First Search and Depth First Search
- Back tracking Search
- N Queen and 8 Puzzle Problem
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	urse Evalua	tion Matrix			
	Theory Asses	sment (TA)**	Term Wor	k Assessmei	nt (TWA)	Lab Assessment (LA)#		
COs	Progressive End Theory Theory Assessment (PTA) End Theory (ETA)		Term Work & Self-Learning Assessment			Progressive Lab	End Laboratory Assessment	
Class/Mid			Assignments	Micro Projects	Other Activities*	(PLA)	(ELA)	
	Sem Test			riojects	Activities			
CO-1	20%	20%	20%		30%			
CO-2	10%	20%	20%		20%	20%	25%	
CO-3	20%	25%	20%	30%	20%	20%	25%	
CO-4	30%	25%	20%	20%	30%	30%	25%	
CO-5	20%	10%	20%	50%		30%	25%	
Total	30	70	20 20 10		20	30		
Marks			1	50				

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N) #: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title	Total	Delevent	Total	ETA (Marks)			
and Number	Classroom Instruction (CI) Hours	Relevant COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0. Artificial Intelligence	9	CO-1	14	6	5	3	
Unit-2.0. Python Programming	12	CO-2	14	4	4	6	
Unit-3.0. Data Analytics and Computing with NumPy	10	CO-3	17	4	5	8	
Unit-4.0 . Data Analysis with Pandas	10	CO-4	18	4	5	9	
Unit-5.0. Data Visualization with Matplotlib	7	CO-5	7	2	2	3	
Total Marks	48		70	20	21	29	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Delevent			
S. No.	Laboratory Practical Titles	Relevant COs	Perfor	Viva-	
J. 140.	Laboratory Fractical Titles	Number (s)	PRA*	PDA**	Voce
		Trumber (6)	(%)	(%)	(%)
1.	Conditional and Iterative statements	CO-2	-	90	10
2.	String handling	CO-2	-	90	10
3.	List, Tuples and Dictionary	CO-2	20	70	10
4.	Python Functions	CO-2	-	90	10
5.	Basic data structures in NumPy	CO-3	-	90	10
6.	Arrays in NumPy	CO-3	-	90	10
7.	Built-in functions in NumPy.	CO-3	20	70	10
8.	Handling Multiple Arrays	CO-3	20	70	10

		Delevent	F		
S. No.	Laboratory Practical Titles	Relevant COs	Perfori	Viva-	
3. NO.	Laboratory Fractical Titles	Number (s)	PRA*	PDA**	Voce
			(%)	(%)	(%)
9.	Indexing in NumPy	CO-3	-	90	10
10.	Working with a Series using Pandas	CO-4	-	90	10
11.	Working with Data Frame Rows	CO-4	20	70	10
12.	Merge and combine data	CO-4	40	50	10
13.	Consider the Salary dataset, which contains 30 observations consisting of years of working experience and the annual wage.	CO-5	80	10	10
14.	Consider the Iris dataset, where observations belong to either one of three iris flower classes.	CO-5	80	10	10

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Group Discussion, Portfolio Based Learning, Live Demonstrations in Classrooms, Lab, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Computer Systems	Desktop Computers with i3 processor, 16 GB RAM, 512 GBHDD	S. No. 1 to 14
2.	Online Python IDE	https://www.online-python.com/	S. No. 1 to 14
3.	Jupyter Notebook	Download from https://jupyter.org/	S. No. 1 to 14
4.	Pip Python package manager	Download Pip 22.3 From https://pypi.org/project/pip/	S. No. 1 to 14
5.	Various modules, Libraries and Packages	NumPy, Pandas, Matplotlib, PyPlot package	S. No. 1 to 14

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
1.	Artificial Intelligence Basics - A Non-Technical Introduction	TomTaulli	Apress (2019)

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
2.	Fundamentals of artificial Intelligence	Chowdhary K. R	Springer 2020
3.	Artificial Intelligence A Modern approach	Stuart J. Russell and Peter Norvig	PrenticeHall 2010, 3 rd Edition
4.	Introduction to Computing and Problem-Solving using Python	E. Balagurusamy	McGraw Hill Education (India)Pvt. Ltd.1 st Edition /2016
5.	Learning Python Programming	Jeffrey Elkner, Allan B.Downey, Chris Meyers	Samurai Media Limited. 2016
6.	Python Programming	Ashok Namdev Kamthane and Amit Ashok Kamthane	McGraw Hill Education (India) Pvt.Ltd.2020, 2 nd Edition
7.	Programming in Python	Dr. Pooja Sharma	BPB Publications 2017
8.	Taming Python by Programming	Jeeva ose	Khanna Book Publishing Co(P)Ltd, 2017, Reprinted2019
9.	Python Data Analytics	Fabio Nelli	Apress,2015
10.	Python for Data Analysis: Data Wrangling with Pandas, Numpy, and IPython	Wes McKinney	O'REILLY 2018, Second Edition

Semester- V

(b) Online Educational Resources:

- 1. NPTEL Web Content- Artificial Intelligence, Prof. P. Mitra, Prof. S. Sarkar, IITKharagpur URL: https://nptel.ac.in/courses/106/105/106105078/
- 2. https://www.learnpython.org
- 3. www.python.org
- 4. https://www.tutorialspoint.com/python

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

Data Source:

- https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/
- https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
- https://www.kaggle.com/arshid/iris-flower-dataset
- https://www.kaggle.com/rohankayan/years-of-experience-and-salary-dataset

A) Course Code : 2400504C(T2400504C/P2400504C/S2400504C)

B) Course Title : Internet of Things (Basic)

C) Pre- requisite Course(s) : Digital Electronics, Electronics Circuits, Fundaments of Computers

and Computer networks

D) Rationale :

The Internet of Things (IoT) is the upcoming field that has the capability to connect everything on the earth. This course focuses on the development of IoT concepts such as sensing, actuation with implementation of communication protocols.

The course also focuses on real life aspects of IoT and how to integrate it in real life projects. The course will simplify the concept of IoT by using the Node MCU board for IoT application development. In this course students will learn about the use of Node MCU and its applications as a beginner/intermediate in the field of IoT. Apart from this, students will learn about the APIs, by using which integration of features like send Email, WhatsApp messages and notification based on certain events in projects is possible. Overall, this course covers both hardware and software aspects of IoT with practical exposure.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/industry.

After completion of the course, the students will be able to-

- **CO-1** Describe the functions of each block of the basic IoT system
- **CO-2** Explain communication protocol used in IoT and its applications
- **CO-3** Use appropriate sensors for the specific measurement through the IoT platform
- **CO-4** Explain APIs, client-server connections and its integration in real life applications.
- **CO-5** Build and test a complete, working IoT system involving prototyping, programming, and data analysis

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Outcomes (POs)								
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Manageme nt	PO-7 Life Long Learning	PSO-1	PSO-2	
CO-1	3	-	-	-	-	-	-			
CO-2	1	2	2	2	2	-	-			
CO-3	1	3	2	2	2	2	2			
CO-4	1	1	2	3	-	2	2			
CO-5	1	1	3	2	2	3	3			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

CourseCode	Course			,	Scheme of Stu (Hours/We	-	
	Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)
		LT					
2400504C	IoT (Basic)	03	-	04	02	09	06

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = $(1 \times Cl \text{ hours}) + (0.5 \times Ll \text{ hours}) + (0.5 \times Notional hours})$

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

		Theory Ass (TA	sessment	Term Self-Le Asses	cheme (Mar Work & earning sment VA)		essment A)	(TA+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
2400504C	IoT (Basic)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as
 externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and selflearning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these
 activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment
 may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist &
 rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400504C

Major Theory Session Outcomes (TSOs)	Units	Relevant
		COs
		Number(s)
TSO.1. a. Describe the concept of IoT.	Unit-1.0 Introduction to IoT	CO-1, CO-5
TSO.1. b. Explain the functions of each block of the	1.1 Basics of IoT, concepts of IoT, History of IoT	
Basic IoT system.	1.2 Basic IoT System and its building blocks	
TSO.1. c. Compare features of various IoT	1.3 Various platforms for IoT (e.g. AWS, AZURE, GCP)	
platforms	1.4 Introduction to Python programming and IoT software	
TSO.1. d. List IoT Real time Applications.	1.5 Applications of IoT	
TSO.1. e. Describe the functioning of given real- time applications		
TSO.2. a. Explain various communication protocols.	Unit 2.0 IoT Communication Protocols	CO-1, CO2
TSO.2. b. Explain working and application of blue tooth	2.1 Basics of given communication protocol alongwith its applications	
TSO.2. c. Explain working and application of ZigBee	2.2 Explain Communication Protocols MQTT	
TSO.2. d. Explain working and application of LoRa	2.3 Bluetooth Low Energy	
TSO.2. e. Explain working and application of Wi-fi	ZigBee	
. 5	LoRa	
	Wi-fi	
TSO.3. a. Differentiate between sensor and Actuator.	Unit-3.0 Sensors and Hardware for IoT	CO-1, CO-3 and CO-5
TSO.3. b. Classify IoT sensors on the basis of their application.	3.1 Sensors and Actuators, Transducers, Classifications of sensors, IoT Sensors	
TSO.3. c. Describe the function of each block of Node MCU.	3.2 Development Boards, classifications, and basics of wireless networks, WiFi libraries	
TSO.3. d. Explain the procedure to connect sensors with Node MCU.	3.3 Introduction to node MCU, block diagram, functions, interfacing with sensors and publishing data on webserver	
	3.4 Device integration with node MCU	
	3.5 Interfacing of sensors with boards	
TSO.4. a. Define APIs and its uses	Unit.4.0 IoT APIs and its Integration	CO-1 and
TSO.4. b. Explain working and application of REST.	4.1 Explain APIs and its use	CO-4
TSO.4. c. Explain working and application of SOAP	4.2 Explanation of given IoT APIs along with its	
TSO.4. d. Explain working and application of json	applications 4.3 MQTT, Broker, subscriber, publisher	
TSO.4. e. Explain the integration of API in IoT	4.4 REST	
application development.	SOAP	
	4.5 JSON	
TCO C a Differentiate between the control of	4.6 Programming API using Python Unit. 5.0 IoT Applications: -	CO-1 and
TSO.5. a. Differentiate between industrial IoT and IoT.		CO-5
TSO.5. b. Describe the applications of IoT in the	5.1 Industrial IoT and Internet of everything	
medical field.	5.2 IoT for consumer electronics products	
TSO.5. c. Describe the medical applications of IoT	5.3 IoT for Medical applications	
in the agriculture field.	5.4 IoT for Agriculture	
TSO.5. d. Describe the innovative IoT applications.	5.5 IoT for security and Law enforcement	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504C

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant CosNumber (s)
LSO 1.1 List various IoT platforms. LSO 1.2 List Down broad features of given platforms. LSO 1.3 List IoT based features in python language.		Prepare a list of platforms used for IoT. Prepare a list of features of above IoT platforms.	CO-1
		Prepare a list of features provided by python language for IoT applications.	
LSO 2.1 Arduino connection with Arduino IDE. LSO 2.2 Connect Bluetooth with Arduino. LSO 2.3 Verification of data communication with Bluetooth.	2.	Establish connectivity between various components of IoT. Establish connection between Arduino and Bluetooth module. Establish connection using WiFi	CO-2
LSO 3.1 Measure the temperature of the givensensor. LSO 3.2 Measure the humidity of the given sensor. LSO 3.3 Measure the pressure of the given sensor.	3.	Publish data on the IoT platform. Measure the temperature of a remotely located temperature sensor Using IOT based temperature data-monitoring system. Measure the humidity of a remotely located humidity sensor Using IOT based humidity data-monitoring system. Measure the pressure of a remotely located pressure sensor Using IOT based pressure data-monitoring system.	CO-3
LSO 4.1 Working with APIs. LSO 4.2 Implementation of APIs using POSTMAN Application.		Download and Configure POSTMAN Application Verify REST APIs through POSTMAN. Verify JSON APIs through POSTMAN. Verify SOAP APIs through POSTMAN.	CO-4
LSO 5.1 Identification of components for variousapplications. LSO 5.2 Estimate the cost for components.	5.	Identify components for given project Estimate the cost to make Project working.	CO-5

- **L)** Suggested Term Work and Self Learning: S2400504C Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Prepare a report on IoT Systems using Internet data.
- 2. Market survey to identify various types of IoT sensors and its pricing.
- 3. Interface IR sensor with Arduino and send the data to Arduino cloud.
- 4. Send IoT data using Node MCU to things Speak cloud.
- 5. Interface Bluetooth module with Arduino and send data using the Bluetooth module.

c. Other Activities:

1. Seminar Topics: - "Future of IoT"

"Technologies for IoT", "Smart City and IoT"

- 2. Visit to industry for latest IoT setup in industrial process.
- 3. Surveys of market for availability of various types of sensors and its pricing.

- 4. Product Development: Development of projects for real life problem solution using IoT.
- 5. Software Development: various open source platform operations.

d. Self-Learning Topics:

- 1. IoT hardware and their use for various applications
- 2. IoT sensors technical specifications
- 3. IoT enabled services
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			ation Matrix					
	Theory Asses	sment (TA)**	Term Wor	k Assessme	ent (TWA)	Lab Assessment (LA)#		
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term W	Term Work & Self-Learning Assessment			End Laboratory Assessment	
	Class/Mid		Assignments	Assignments Micro Other Activities*		(PLA)	(ELA)	
	Sem Test			Projects				
CO-1	10%	10%	20%		33%	10%	20%	
CO-2	15%	10%	20%		33%	15%	20%	
CO-3	30%	30%	20%		34%	15%	20%	
CO-4	20%	30%	20%	50%		30%	20%	
CO-5	25%	20%	20%	50%		30%	20%	
Total	30	70	20 20 10		20	30		
Marks				50	,			

Legend:

*: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)
#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.
- N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0. Introduction to IoT	5	CO-1	7	3	4	-
Unit-2.0. IoT Communication protocols	5	CO-2	7	3	2	2
Unit-3.0. Sensors and Hardware for IoT	14	CO-3	21	6	7	8
Unit-4.0 IoT APIs and its Integration	14	CO-4	21	6	5	10

Unit-5.0. IoT Applications	10	CO-5	14	2	4	8
Total Marks	48		70	20	22	28

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant		PLA/ELA	
S. No.	Laboratory Practical Titles	COs		rmance	Viva-
	·	Number(s)	PRA* (%)	PDA** (%)	Voce (%)
1.	Prepare a list of platforms used for IoT.	CO-1	60	30	10
2.	Prepare a list of features of above IoT platforms.	CO-1	60	30	10
3.	Prepare a list of features provided by python language for IoT applications.	CO-1	60	30	10
4.	Establish connectivity between various components of IoT.	CO-2	60	30	10
5.	Establish connection between Arduino and Bluetooth module.	CO-2	60	30	10
6.	Establish connection using WiFi	CO-2	70	20	10
7.	Publish data on the IoT platform.	CO-3	70	20	10
8.	Measure the temperature of a remotely located temperature sensor Using IOT based temperature data-monitoring system.	CO-3	60	30	10
9.	Measure the humidity of a remotely located temperature sensor Using IOT based temperature data-monitoring system.	CO-3	60	30	10
10.	Measure the pressure of a remotely located temperature sensor Using IOT based temperature data-monitoring system.	CO-3	60	30	10
11.	Publish the data using Mqtt	CO-4	60	30	10
12.	Download and Configure POSTMAN Applications	CO-4	60	30	10
13.	Verify REST APIs through POSTMAN.	CO-4	60	30	10
14.	Verify JSON APIs through POSTMAN.	CO-4	60	30	10
15.	Verify SOAP APIs through POSTMAN.	CO-4	60	30	10
16.	Identify components for given project	CO-5	50	40	10
17.	Estimate the cost to make Project working.	CO-5	50	40	10

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriatelyselected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1	Bluetooth Modem- BlueSMiRF Silver	Sparkfun Bluetooth modem	As mentioned above list
2	Postman Software	Open-source downloadable	
3	Node MCU board	Generic	
4	IoT free cloud	Arduino cloud/Thing Speak/Blynk	
5	ATAL Lab	As per the list as address below	
	Package-1	ATAL Equipment list'	
	Package-2	(http://aim.gov.in/guidelines-for-school.php).	
	Package-4		

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.			
1	Internet of Things Architecture and Design Principles	Raj Kamal	Mc Graw Hills, New Delhi ISBN 13: 978-93-90722-38-4
2	Internet of things (IoT): technologies, applications, challenges and solutions	Edited By BK Tripathy , J Anuradha	CRC Press, ISBN 9780367572921, June 30, 2020
3	Internet-of-Things(IoT) Systems: Architectures, Algorithms, Methodologies	by Dimitrios Serpanos & Marilyn Wolf	Springer; 1st ed. 2018 edition (17 January 2018)
4	Custom Raspberry Pi Interfaces: Design and build hardware interfaces for the Raspberry	Pi by Warren Gay	Apress; 1st ed. edition (23 February 2017), ISBN- 10: 9781484224052, ISBN-13: 978-1484224052
5	'Learning Internet of Things',	Peter Waher	Packt Publishing, 2015, ISBN9781783553532, https://lib.hpu.edu.vn/handle/123456789/31693
6	Sensors, Actuatorsand Their Interfaces,	N. Ida	Scitech Publishers, 2014.

(b) Online Educational Resources:

- 1. nptel.iitm.ac.in/courses/.../IIT.../lecture%2023%20and%2024.htm
- 2. en.wikipedia.org/wiki/Shear and moment diagram
- 3. www.freestudy.co.uk/mech%20prin%20h2/stress.pdf
- 4. www.engineerstudent.co.uk/stress_and_strain.html
- 5. https://www.iit.edu/arc/workshops/pdfs/Moment_Inertia.pdf

- 6. https://www.veritis.com/blog/aws-vs-azure-vs-gcp-the-cloud-platform-of-your-choice/
- 7. https://wiki.python.org/moin/TimeComplexity
- 8. www.engineerstudent.co.uk/stress_and_strain.html
- 9. https://www.iit.edu/arc/workshops/pdfs/Moment_Inertia.pdf
- 10. Amini, P. (2014). Sulley: Pure Python fully automated and unattended fuzzing frame- work.
- 11. https://github.com/OpenRCE/sulley

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Lab Manuals

A) Course Code : 2400504D(T2400504D/P2400504D/S2400504D)

B) Course Title : Drone Technology (Basic)

C) Pre- requisite Course(s) :
D) Rationale :

Rapid technological innovation has provided users cutting-edge products at affordable prices. Traditionally, drones had been limited to military use due to high costs and technical sophistication. In recent years, the drone has number of commercial uses and are also proving to be extremely beneficial in places where a man cannot reach or is unable to perform in a timely and efficient manner. Today, drones are used in construction, photography, agriculture, defense, environmental studies and monitoring and other industries to protect the skies, repopulate forests and accomplish much more on a huge scale. This course will acquaint the student with the basic drone technology and applicable drone rules and regulations in India. Considering that the main operational areas of diploma holders, it is essential that he should be exposed to basic drone designing, programming, operating, maintaining and using them safely.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Operate a drone safely by applying appropriate drone rules and regulations.
- **CO-2** Design the structure of drone with drone components and equipment.
- **CO-3** Interface flight controller board with sensors, ESC and radio communication unit in drone technology.
- **CO-4** Use drone simulator and identify different types of ports and connectors of drone.
- **CO-5** Use python programming while drone designing.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Developme nt of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Managem ent	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	2	-	-	-	3	-	2		
CO-2	3	2	3	3	-	-	-		
CO-3	3	2	3	3	-	-	-		
CO-4	2	-	-	2	-	3	2		
CO-5	-	2	2	3	-	-	-		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)							
Code	Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	Т						
2400504D	Drone								
	Technology (Basics)	03	-	04	02	09	06		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			As	sessment So	cheme (Marl	ks)			
se Code		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)	
Course	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+	
2400504D	Drone Technology (Basics)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400504D

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1a. Describe the various historicalevolutionary steps of drone technology TSO 1b. Explain Drone motion based on principle of aerodynamics. TSO 1c. Classify different types of drones and make chart of its application, advantages and disadvantages TSO 1d. Develop attitude to follow proper rules and regulations of drones flying in India. TSO 1e. Explore future prospects of drones inIndia.	Introduction to Drone Technology Introduction to Drones and UAV Definition History Drone in Indian aspect Introduction to Flight Dynamics Various types of Drones and their respective Applications Multirotor drones Fixed wing structure Drone flights using an understanding of FAA DGCA Digital sky platform RPTO Drone regulations-No drone zones	CO-1
TSO 2a. Explain the use and function of different types of Drone components. TSO 2b. Select suitable drone frame and propellers for given application. TSO 2c. Explain working principle and function of different sensors used in drone technology. TSO 2d. Write use of Gyro sensor and Accelerometer in drone. TSO 2e. Describe different types and capacity of Battery used in various drone applications. TSO 2f. State the selection criteria of motor for given drone application. TSO 2g. Write advantage of BLDC motors in making of Drones.	Unit-2.0 Drone and its components • Drone frame • Propellers Sensors • Gyro sensor and Accelerometer • Speed and Distance Sensor • Temp sensor • Barometer	CO-2
TSO 3a. Explain four types of motion used indrone's operation. TSO 3b. Describe the working and applications of	Unit-3.0 Drone controller and motion Propulsion and Vertical Motion	CO-3

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
Electronic speed controller. TSO 3c. Explain the working principle of Flight controller unit used in drone. TSO 3d. Explain Radio communication unit used in drone. TSO 3e. Explain the communication of Flight controller board with motor, ESC andsensors with suitable diagram TSO 4a.Describe utility of different communication port used in drone. TSO 4b. Identify different types of connectors and write their specifications TSO 4c. Explain the use of drone simulator software	Controller and Flying Instructions Electronic speed Controller (ESC) Flight Controller Board (FCB) Radio Communication Transmitter and Receiver for radio signal Unit-4.0 Connections and Interfaces of Devicesin Drone and Drone Simulator Communication Port PWM RS232, RS422, RS485 UART	CO-4
TSO 5a.Write basic code in Python. TSO 5b. Explain structure and components of a Python program. TSO 5c. write syntax of loops and decision statements in Python. TSO 5d. Explain steps to create functions and pass arguments in Python.	CAN I2C Different types of connectors and its specification Drone Simulator software Drone simulator Hardware Unit-5.0 Introduction to Python for Drone Python programing refreshers for IoT, AI andDrone Integration of devices with cloud services Microsoft Azure, AWS	CO-5

Note: One major TSO may require more than one theory session/period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504D

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1 Choose suitable materials for makingdrone frame.	1.	Determine the strength of materials used in drones frame.	CO-2
LSO 2 Select suitable materials for making drone propellers.	2.	Determine the strength of materials used in drones Propellers.	CO-2
LSO 3 Use appropriate battery as per need of flight time for specific drone application.	3.	Test different parameters of batteries used in drones	CO-2
LSO 4 Identify suitable motors as per payload of specific drone application.	4.	Test motors suitable for specific Drone application.	CO-2
LSO 5 Operate Gyro sensor and Accelerometer.	5.	Test and measure Gyro sensor and Accelerometer and their characteristics.	CO-2
LSO 6.1 Identify different sensors based on their characteristics. LSO 6.2 Interface different types of sensor in drone.	6.	Test different sensors and their characteristics with Microcontroller based Flight controller board.	CO-2, CO-3
LSO 7 Demonstrate four type of drone motion.	7.	Determine thrust/torque of motor by changing different drone motion	CO-2, CO-3

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 8.1 Configure Flight control board (FCB) LSO 8.2 Demonstrate use of Flight control board (FCB	8.	Test and troubleshoot Flight control board (FCB).	CO-3
LSO 9.1 Measure various parameters of sensor LSO 9.2 Interface sensor with flight controller board.	9.	Test and perform communication of Flight control board (FCB) with sensor	CO-3, CO-2
LSO 10 Use motor with flight controller board.	10.	Test and perform communication of Flight control board (FCB) with motor.	CO-3, CO-2
LSO 11 Interface ESC with flight controller board.	11.	Test and perform communication of Flight control board with ESC.	CO-3
LSO 12 Configure radio communication device to control drones	12.	Test and perform communication of Flight control board with RF transceiver.	CO-3
LSO 13.1 Identify different types of ports and connectors of drone. LSO 13.2 Assemble drone component.	13.	Test Hardware assembly for drone.	CO-4 CO-3
LSO 14.1 Identify different motions in drone simulator. LSO 14.2 Operate drone in simulator for specific task	14.	Perform different motion in drone simulator.	CO-4
LSO 15.1 Write code of loop and decision statement in python. LSO 15.2 Interpret loop and decision statement LSO 15.3 Debug code of loop and decision statement	15.	Build and run loops and decision statements for specific application in Python.	CO-5
LSO 16.1 Make function in python. LSO 16.2 Interpret given function statement LSO 16.3 Debug code of function in python	16.	Build and Run functions for specific application and pass arguments in Python.	CO-5
LSO 17.1 Identify python programming steps to interface drone components. LSO 17.2 Identify error in python program LSO 17.3 Debug the given python program	17.	Write basic programming in python to interface different component of Drones	CO-5, CO-3

- **L)** Suggested Term Work and Self Learning: S2400504D Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in linewith the targeted COs.

b. Micro Projects:

- 1.Design drone for simple application.
- 2.Test different sensors, their characteristics and make chart which are used in different drones' applications.
- 3.Download 5 videos on drone design with different components. Watch them and write report on it.
- 4. Write report on Drone application for precision agriculture.
- 5. Survey nearby electronics shop and Prepare report of list of drone component and its specification.
- 6. Visit nearby tool room, small industry, Drone training institute facilities. Prepare report of visit with special comments of drone technology used, material used, cost of printed component.

c. Other Activities:

- 1. Seminar Topics-History of Drone, Drone regulations, Proximity sensor, Bernoulli's principle apply in drone, Radio communication used in drones, Drone Simulator, Python Programming.
- 2. Visits: Visit nearby tool room, small industry, Drone training institute facilities. Prepare report of visit with special comments of drone technology used, material used, cost of printed component.
- 3. Surveys: Survey nearby electronics shop and Prepare report of list of drone component and its specification and explore Drone simulator.
- 4. Product Development
- 5. Software Development

d. Self-Learning Topics:

- 1. History of Drones
- 2. Drone in Indian aspect
- 3. Drone regulations
- 4. Principle of aerodynamics for Drones
- 5. Drone simulator
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix										
	Theory Asses	sment (TA)**	Term Wor	k Assessme	Lab Assessment (LA)#						
COs	Progressive Theory Assessment Assessment (ETA) COs (PTA) End Theory Assessment Term Work & Self-Learning Assessment				J	Progressive Lab Assessment	End Laboratory Assessment				
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)				
	Sem Test			Projects	Activities*						
CO-1	10%	10%	10%		10%						
CO-2	30%	30%	30%	33%	30%	30%	30%				
CO-3	30%	30%	30%	34%	30%	30%	30%				
CO-4	15%	10%	15%		15%	20%	20%				
CO-5	15%	20%	15%	33%	15%	20%	20%				
Total	30	70	20	20	10	20	30				
Marks				50							

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N) #: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	Cos Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0. Introduction to Drone Technology	6	CO-1	08	03	02	03
Unit-2.0. Drone and its component	12	CO-2	20	05	07	08
Unit-3.0. Drone controller and motion	12	CO-3	20	05	07	08
Unit-4.0. Connections and Interfaces of Devices in Drone and Drone Simulator	8	CO-4	08	03	02	03
Unit-5.0. Introduction to Python for Drone	10	CO-5	14	04	04	06
Total Marks	48		70	20	22	28

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant		PLA /E	LA
S. No.	Laboratory Practical Titles	COs		Performance	
3. 140.		Number(s) PRA* PDA** (%) (%)		Voce (%)	
1.	Determine the strength of materials used in drones frame.	CO-2	60	30	10
2.	Determine the strength of materials used in drones Propellers.	CO-2	60	30	10
3.	Test different parameters of batteries used in drones	CO-2	50	40	10
4.	Test motors suitable for specific Drone application.	CO-2	50	40	10
5.	Test and measure Gyro sensor and Accelerometer and their characteristics.	CO-2	50	40	10
6.	Test different sensors and their characteristics with Microcontroller based Flight controller board.	CO-2, CO-3	50	40	10
7.	Determine thrust/torque of motor by changing different dronemotion	CO-2, CO-3	60	30	10
8.	Test and troubleshoot Flight control board (FCB).	CO-3	60	30	10
9.	Test and perform communication of Flight control board (FCB) with sensor	CO-3, CO-2	60	30	10
10.	Test and perform communication of Flight control board (FCB) with motor.	CO-3, CO-2	60	30	10
11.	Test and perform communication of Flight control board with ESC.	CO-3	60	30	10
12.	Test and perform communication of Flight control board with RF transceiver.	CO-3	60	30	10

		Relevant	PLA /ELA				
S. No.	Laboratory Practical Titles	COs	Perfor	mance	Viva-		
J. 140.	Laboratory Fractical Fittes	Number(s)	PRA*	PDA**	Voce		
		rtumber (5)	(%)	(%)	(%)		
13.	Test Hardware assembly for drone.	CO-4	50	40	10		
	·	CO-3					
14.	Perform different motion in drone simulator.	CO-4	50	40	10		
15.	Build and run loops and decision statements for specific applicationin	CO-5	50	40	10		
	Python.						
16.	Build and Run functions for specific application and pass arguments	CO-5	50	40	10		
	in Python.						
17.	Write basic programming in python to interface different componentof	CO-5,	50	40	10		
	Drones.	CO-3					

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note:

This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Drone Frame	Tricopter/Quadcopter/Hexacopter	1-13
2.	Propellers	10X4.5 CW/Others	1-13
3.	Speed Sensor	3.3 or 5.0Vdc	1-13
4.	Distance Sensor	5Volt operating voltage	1-13
5.	Gyro sensor and Accelerometer	5Volt operating voltage	1-13
6.	Barometer	Altitude tracking, temp range from 25°C to 40°C	1-13
7.	TOF Sensor	Accurate ranging up to 4 m, Fast ranging frequency up to 50	1-13
8.	Battery	Lithium Polymer Battery,2200mAH/others	1-13
9.	Motor	BLDC,1000kv or 1000RPM/volt	1-13
10.	Electronic speed Controller (ESC)	30 Amp,2-4s or cell	1-13

S.	Name of Equipment, Tools and Software	Broad Specifications	Relevant
No.	Software		Experiment/Practical Number
11.	Flight Controller Unit	KK 2.1.5/ ArdupilotAPM 2.8/ Pixhawk/others	1-13
12.	Transmitter and Receiver for radio signal	4 channels/6 Channels, 2.4 GHz & 5.8 GHz	1-13
13.	Drone Simulator Software	RC flight simulator	14
14.	Python Software	Hardware required-More than 4 GB RAM, 64-bitCPU preferable	15,16,17

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
1.	Make: Getting Started with Drones: Build and Customize Your Own Quadcopter	Terry Kilby&Belinda Kilby	Shroff/Maker Media, First edition 2016, ISBN-978-9352133147
2.	Agricultural Drones: A Peaceful Pursuit	K R Krishna	Apple Academic Press,1st edition 2018, ISBN-978-1771885959
3.	DIY Drone and Quadcopter Projects: A Collection of Drone-Based Essays, Tutorials, and Projects	Editors of Make	Shroff/Maker Media; First edition 2016, ISBN-978-9352133994
4.	Building Multicopter Video Drones: Build andfly multicopter drones to gather breathtakingvideo footage	Ty Audronis	Packt Publishing Limited; Illustrated edition,2014, ISBN-978-1782175438
5.	The Complete Guide to Drones	Adam Juniper	Ilex Press, Extended 2nd Edition,2018 ISBN-9781781575383

(b) Online Educational Resources:

- 1. https://nptel.ac.in/courses/101104073
- 2. https://en.wikipedia.org/wiki/Unmanned aerial vehicle
- 3. https://www.scienceabc.com/innovation/what-is-drone-technology.html
- 4. https://www.dronezon.com/learn-about-drones-quadcopters/what-is-drone-technology-or-how-does-drone-technology-work/
- 5. https://www.youtube.com/watch?v=OWaXIK9sHeE
- 6. https://books.google.co.in/books?id=2M0hEAAAQBAJ&printsec=copyright&redir_esc=y#v=onep age&q&f=false

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Lab Manuals

A) Course Code : 2400504E (T2400504E/P2400504E/S2400504E)

B) Course Title : 3D Printing and Design (Basic)
C) Pre- requisite Course(s) : Computer Aided Modeling

D) Rationale :

Additive manufacturing (AM) or Additive layer manufacturing (ALM) is the industrial production name for 3D Printing. 3D Printing is a process that makes solid objects from a digital model. It involves depositing material either metal, powdered plastic, or liquid in thin layers (2D) to get a 3D object. This basic course on 3D Printing tries to develop understanding of the process of making real object from digital model in the students. It also covers the software/hardware required, various materials used for FDM based 3D Printing and details about printing process parameters. The knowledge gained through this course will help the students to take up advanced course on 3D Printing in next semester.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Develop CAD models for 3D Printing.
- **CO-2** Import and Export CAD data in .STL file format to generate GCODE file.
- **CO-3** Select suitable FDM based 3D Printing material for given applications.
- **CO-4** Select suitable FDM based 3D Printing process parameters for given situations.
- **CO-5** Produce products using FDM based 3D Printing processes.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2
CO-1	3	-	3	2	-	-	2		
CO-2	3	2	-	2	-	-	-		
CO-3	3	3	-	2	3	-	-		
CO-4	3	3	-	2	-	-	-		
CO-5	3	-	3	3	-	3	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course		Scheme of Study (Hours/Week)							
Course Code	Course Title	Instru	room uction CI)	Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)			
		L	Т							
2400504E	3D Printing and Design (Basic)	03	-	04	02	09	06			

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

Li: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			Α	ssessment S	cheme (Mar	·ks)			
		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)	
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (T⊅	
2400504E	3D Printing and Design (Basics)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400504E

Major Theory Session Outcomes (TSOs)		Units	Relevant COs
TSO 1a.	Explain CAD-CAM and related terminologies.	Unit-1.0 Additive Manufacturing Introduction and	Number(s) CO1
	Convert the given CAD file format into others.	CAD	
TSO 1c.	Transfer the given CAD data to CAM facilities.	1.1 CAD-CAM and its integration.	
TSO 1d.	Classify 3D Printing processes.	1.2 CAD- Part and Surface modeling.	
TSO 1e.	List the advantages of additive manufacturing	1.3 CAD file formats.	
	processes over conventional manufacturing processes.	1.4 Additive v/s Conventional Manufacturing processes.	
TSO 1f.	List typical steps involved in 3D printing of an	1.5 Process chain for 3D Printing.	
	object from digital model.	1.6 Classification of 3D Printing Processes.	
TSO 1g.	Explain reverse engineering steps for 3D	1.7 Product design and prototyping.	
	Printing.	1.8 Reverse Engineering for 3D Printing.	
TSO 2a.	Explain the given STL interface terminology.	Unit-2.0 Data Preparation for 3D Printing	CO1, CO2
TSO 2b.	Use the given alternative 3D printing interface.	2.1 STL interface Specification, STL data generation,	
TSO 2c.	Generate STL file for the given CAD file.	STL data Manipulation. 2.2 Advantages and limitations of STL file format,	
TSO 2d.	Repair the given STL file.	Open files, Repair of STL files,	
TSO 2e.	Apply part orientation and support techniques	2.3 Alternative 3D Printing interfaces.	
	for the given situation.	2.4 Part orientation and support generation, Factors	
TSO 2f.	Perform slicing of the given CAD model using the given slicing software.	affecting part orientation, Various models for part orientation determination.	
TSO 2g.	Generate tool path using simulation software	2.5 The function of part supports, Support structure	
	for the given situation.	design, Automatic support structure generation.	
		2.6 Model Slicing and Contour Data organization,	
		Direct and adaptive slicing: Identification of peak	
		features, Adaptive layer thickness determination.	
		2.7 Tool path generation.	
TSO 3a.	Explain the given 3D Printing process.	Unit-3.0 Additive Manufacturing Techniques	CO3, CO4
	Select FDM 3D Printing materials for the given application. Select FDM based 3D Printing processes parameters for given application with	3.1 Fused Deposition Modeling (FDM), Stereo lithography (SLA), Selective Laser Sintering (SLS), Binder Jetting, Material Jetting, Direct Energy Deposition and Laminate Object Manufacturing.	
	justification.	3.2 FDM based 3D printing process details.	
		3.3 3D Printing materials and selection for FDM.	
		3.4 FDM Process parameter for various applications.	
TSO 4a.	Identify various Aerospace, Electronics, Health care, Automotive, Construction, Food	Unit-4.0 Application of 3D Printing 4.1 Additive Manufacturing Application Domains:	CO3, CO4
	processing, Machine tool components that can be 3D Printed.	Aerospace, Electronics, Health Care, Defense, Automotive, Construction, Food Processing, Machine Tools	

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 4b. Estimate the cost and time of FDM based 3D printing of the given component.		
 TSO 5a. Select suitable 3D Printer (FDM) and software for the given application with justification. TSO 5b. Analyze the effect of given FDM based 3D printing process parameters using 3D printer software simulation. TSO 5c. List steps to perform 3D scanning of the given object. TSO 5d. Repair 3D scanned digital model. TSO 5e. Set different FDM 3D printing process parameters to get a sound plastic component. 	 Unit-5.0 3D Printers and Software and Scanners 5.1 Construction details and working of established FDM based 3D printers for plastics parts. 5.2 Accuracy, Precision and Tolerance in 3D printing. 5.3 3D Printer software- Fusion 360, Solidworks, Onshape, Tinkercad, Ultimaker Cura, MeshLab, Simplyfy 3D, Repetier host, Slic3r, etc. – use and operation of anyone. 5.4 3D Scanners and working. 5.5 Producing a part using FDM based 3D Printer. 	CO4, CO5

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504E

Prac	tical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1. LSO 1.2.	Use CAD software. Prepare digital models of simple 3D entities.	1.	Develop digital models of following simple components using any CAD software: Nut Bolt Network cable Jack Coat button Spoon	CO1
LSO 2.1.	Prepare digital models of complex 3D entities and assemblies.	2.	Develop digital models of following assemblies using any CAD software:	CO1
LSO 3.1.	Surf web for downloading readymade free CAD models. Convert one CAD file format into another.	3.	Download three digital CAD models freely available on web in different formats and then convert them into .stl/obj format.	CO1
LSO 4.1.	Use the given Slicing software for 3D Printing. Perform slicing operation on the given digital model.	4.	Perform slicing operation on one digital model available under each Pr. No.1, 2 and 3.	CO2
LSO 5.1. LSO 5.2.	Use the available 3D printing software. Selection of 3D printing process and performance parameters.	5.	Analyse the effect of different process parameters, materials on printing time, material required, surface finish, etc. through simulation using 3D printing software on sliced models available from Pr. No. 4	CO3, CO4, CO5
LSO 6.1. LSO 6.2.	Produce single plastic components using available 3D printer. Perform post processing operations on printed component.	6.	Print one single component on available FDM based 3D printer with PLA/ABS material	CO3, CO4, CO5

Practical/Lab Session Outcomes (LSOs)		S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)	
LSO 7.1.	Select appropriate layer thickness, tolerance, fit.	7.	Print one assembly on available FDM based 3D printer with PLA/ABS material	CO3, CO4, CO5	
LSO 7.2.	Produce an assembly of plastic components using available 3D printer.				
LSO 8.1.	Choose suitable material for printing flexible structure (assembly of same small pieces to give flexible fabric effect).	8.	Model and print a flexible fabric structure with PLA/ABS material (assembly of same small pieces to give flexible fabric effect)	CO3, CO4, CO5	
LSO 8.2.	Choose suitable design/shape to create a flexible type structure.				
LSO 8.3.	Produce flexible plastic structure using available 3D printer.				
LSO 9.1.	Selection of 3D printing process parameters.	9.	Change printing process parameters and repeat experiment number 6.	CO4, CO5	
LSO 10.1.	Use of available 3D scanner.	10.	Scan the given complex component using	CO5	
LSO 10.2.	Develop 3D digital model using scanning approach.		available 3D Sanner.		
LSO 10.3.	Modeling of complex 3D objects using 3D scanning.				
LSO 11.1.	Produce a complex plastic structure using available 3D printer and scanner.	11.	Print the 3D scanned digital model of Pr. No. 10 on available FDM based 3D printer with PLA/ABS	CO5	
LSO 11.2.	Apply Reverse Engineering approach to exactly 3D print an existing real object.		material		

- **L)** Suggested Term Work and Self Learning: S2400504E Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Perform 3D printing of plastic casing of inhaler used by Asthma patients and estimate the cost.
- 2. Download 5 videos on 3D printing of different components, watch them and write a report to detail out the steps involved, 3D Printer used, 3D Printing software used, material used, complexity involved, printing time, post processing steps used.
- 3. Print two pieces of same components using ABS and PLA and compare their strength, surface roughness, weight, cost.
- 4. Download two 3D printing free software and try to check their compatibility with your lab printer.

c. Other Activities:

- 1. Seminar Topics:
 - Commercially available 3D printers and software.
 - Strength of 3D printed Plastic components as compared to Die cast Plastic components.
 - Properties of PLA and ABS 3D printing materials.
 - Reverse engineering application of 3D Printing.
- 2. Visits: Visit nearby tool room/industry with 3D Printing facilities. Prepare report of visit with special comments of 3D printing technique used, material used, single component/batch production/mass production and cost of printed component.

- 3. Self-Learning Topics:
 - 3D printing of flexible plastic components.
 - 3D printing of micro/mini components.
 - Conversion of CAD file formats into IGES.
 - 3D scanning process.

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate **CO attainment**.

	Course Evaluation Matrix									
	Theory Asses	sment (TA)**	Term W	ork Assessn	nent (TWA)	Lab Assessment (LA)#				
COs	Progressive End Theory Theory Assessment Assessment (ETA) COs (PTA) End Theory Term Work & Self Learning Assessment						End Laboratory Assessment			
	Class/Mid		Assignments	Micro	Other Activities*	(PLA)	(ELA)			
	Sem Test			Projects						
CO-1	15%	15%	15%	-	-	20%	20%			
CO-2	10%	10%	10%	25%	-	10%	20%			
CO-3	15%	15%	15%	25%	33%	15%	20%			
CO-4	30%	30%	30%	25%	33%	15%	20%			
CO-5	30%	30%	30%	25%	34%	40%	20%			
Total	30	70	20	20	10	20	30			
Marks				50	1					

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Additive Manufacturing Introduction and CAD	8	CO1	10	3	3	4
Unit-2.0 Data Preparation for 3D Printing	8	CO1, CO2	10	3	2	5
Unit-3.0 Additive Manufacturing Techniques	8	CO3, CO4	10	5	2	3
Unit-4.0 Application of 3D Printing	12	CO3, CO4	20	5	6	9
Unit-5.0 3D Printers and Software and Scanners	12	CO4, CO5	20	4	6	10
Total	48	-	70	20	19	31

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

			PLA/ELA		
S.	Laboratory Dractical Titles	Relevant COs	Performance		Viva-
No.	Laboratory Practical Titles	Number(s)	PRA*	PDA**	Voce
			(%)	(%)	(%)
1.	Develop digital models of following simple components using any CAD software: Nut Bolt Network cable Jack Coat button Spoon	CO1	30	60	10
2.	Develop digital models of following assemblies using any CAD software:	CO1	40	50	10
3.	Download three digital CAD models freely available on web in different formats and then convert them into .stl/obj format.	CO1	30	60	10
4.	Perform slicing operation on one digital model available under each Pr. No.1, 2 and 3.	CO2	30	60	10
5.	Analyse the effect of different process parameters, materials on printing time, material required, surface finish, etc. through simulation using 3D printing software on sliced models available from Pr. No. 4	CO3, CO4, CO5	30	60	10
6.	Print one single component on available 3D based Printer with PLA/ABS material	CO3, CO4, CO5	30	60	10
7.	Print one assembly on available 3D based Printer with PLA/ABS material	CO3, CO4, CO5	30	60	10
8.	Model and print a flexible fabric structure with PLA/ABS material (assembly of same small pieces to give flexible fabric effect)	CO3, CO4, CO5	40	50	10
9.	Change printing process parameters and repeat experiment number 6.	CO4, CO5	40	50	10
10.	Scan the given complex component using available 3D Sanner.	CO5	40	50	10
11.	Print the 3D scanned digital model of Pr. No. 10 on available 3D based Printer with PLA/ABS material	CO5	30	60	10

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to beprepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S.	Name of Equipment, Broad		Relevant
No.	Tools and Software	Specifications	Experiment/Practical
			Number
1.	High end computers	Processor Intel Core i7 with Open GL Graphics Card, RAM 32 GB,	All
		DDR3/DDR4, HDD 500 GB, Graphics Card NVIDIA OpenGL 4 GB, OS	
		Windows 10	
2.	Parametric Computer	CATIA/Solid works/NX/Creo OR Available with CoE	1,2
	Aided Design software		
3.	3D printer	Fused Deposition Modelling system with complete accessories; Build	6, 7, 8, 10
		Volume-300 x 300 x 300mm or Higher; Layer Thickness-0.1 – 0.4 OR	
		Available with CoE	
4.	3D Printing Material	ABS/PLA OR Available with CoE	6, 7, 8, 10
5.	3D Printing software	Latest version of software like:	3,4
		Cura/PrusaSlicer/ideaMaker/Meshmixer/MeshLab	
		OR Available with CoE	
6.	Post processing	Post processing Deburring tools (tool handle & deburring blades), Electronic Digital	
	equipments and tools	Caliper, Cleaning Needles, Art knife set, Long nose pliers, Flush	
		cutters, Wire brush, Nozzle cleaning kit, Tube cutter, Print removal	
		spatula, Needle file, Cutting mat, Glue stick, Wire stripper etc.	
7.	3D Scanner and Processing	Handheld 3D scanner, Accuracy up to 0.1 mm, Resolution up to 0.2	10
	software	mm, Real time onscreen 3D model projection and processing,	
		Wireless technology with an inbuilt touch screen and battery,	
		Extended field of view for capturing both large and small objects,	
		Processing Software OR Available with CoE	

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing	Andreas Gebhardt,	Hanser Publisher, 2011 ISBN: 156990507X, 9781569905074
2.	3D Printing and Design	Sabrie Soloman	Khanna Publishing House, Delhi ISBN: 9789386173768
3.	3D Printing and Rapid Prototyping- Principles and Applications	C.K. Chua, Kah Fai Leong	World Scientific, 2017 ISBN: 9789813146754
4.	Getting Started with 3D Printing: A Hands-on Guide to the Hardware, Software, and Services Behind the New Manufacturing Revolution	Liza Wallach Kloski, Nick Kloski	Make Community, LLC; 2nd edition, 2021 ISBN: 9781680450200

(b) Online Educational Resources:

- 1. https://onlinecourses.nptel.ac.in/noc21_me115/preview
- 2. https://archive.nptel.ac.in/courses/112/104/112104265/
- 3. https://www.youtube.com/watch?v=b2Od4YHcLAQ
- 4. https://www.youtube.com/watch?v=EF8CNR-gcXo
- 5. https://www.academia.edu/41439870/Education_Resources_for_3D_Printing
- 6. https://www.think3d.in/landing-pages/beginners-guide-to-3d-printing.pdf
- 7. https://all3dp.com/1/types-of-3d-printers-3d-printing-technology/

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. 3D Printing Projects DK Children; Illustrated edition, 2017
- 2. The 3D Printing Handbook: Technologies, design and applications Ben Redwood, Filemon Schöffer, Brian Garret, 3D Hubs; 1st edition, 2017
- 3. 3D Printer Users' Guide
- 4. 3D Printer Material Handbook
- 5. Lab Manuals

A) Course Code : 2400504F (T2400504F/P2400504F/S2400504F)

B) Course Title : Industrial Automation (Basic)

C) Pre- requisite Course(s) : Basic Mechanical Engineering, Basic Electrical Engineering, Digital

Electronics and Basic programming skills

D) Rationale

The technological education and research scenario, all over the world, is turning towards a multidisciplinary one. The present scenario is different as compared to the recent past in the sense that the engineering disciplines are now dilating instead of diverging. The primary reason being that the current technological designs are of highly complex and inter-interdisciplinary nature involving synergistic integration of many aspects of engineering knowledge base. Industrial automation has become an essential part of every modern industry. Automation helps industry to increase the productivity, quality, accuracy and precision of industrial processes. Stiff competition, higher quality standards and growing concerns of safety & environmental damage have pushed the Industrial sector to adapt state-of-the-art Automation Techniques for effective utilization of resources and optimized performance of the plants. Today engineer is needed to meet the requirements of designing appropriate automation systems. They should have the knowledge of different fields like PLC and PID based Controller, Instrumentation, Networking, Industrial Drives, SCADA/HMI, High speed data acquisition, etc., to become a successful automation engineer. The discipline Automation is enormous in magnitude. The students passing this course will gain basic understanding about industrial automation and will be prepared to take up the advance course in Industrial automation in next semester.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Apply principles and strategies for automation for a given situation.
- **CO-2** Use sensors and input devices as per given situation.
- **CO-3** Test the given PLC for its functionality.
- **CO-4** Use actuators and output devices as per given situation.
- **CO-5** Test the working of various types of control system and controllers

F) Suggested Course Articulation Matrix (CAM):

		Outco	ne Specific omes* Os)						
Course Outcomes (COs)	PO-1 Basic and Discipline- Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Developm entof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	2	-	2	2	-	2		
CO-2	3	2	2	2	-	-	2		
CO-3	3	2	2	2	2	-	2		
CO-4	3	2	2	2	2	-	2		
CO-5	3	2	2	2	-	-	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Cours	Course				Scheme of (Hours/W	•	
e Code	Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)
		L	Т				
2400504F	Industrial						·
	Automation	03	-	04	02	09	06
	(Basic)						

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

Li: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			As	ssessment Sc	heme (Marks)		
		Theory Ass (TA		Term Work Learning Ass (TW)	sessment	Lab Ass (LA)	essment)	(TA+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
2400504F	Industrial	20	70	20	20	20	20	200
	Automation (Basic)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon thecompletion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Society connect, Multidisciplinary aspects, Indian Knowledge System (IKS) and others need to be integrated.

J) Theory Session Outcomes (TSOs) and Units: T2400504F

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO.1. a Describe Industry 4.0 and its component TSO.1. b Explain different types of automation systems TSO.1.c Identify the type of automation used in a given industry TSO.1.d Analyze the working of industrial processes and products for automation. TSO.1.e Select principles and strategies for automation for a given situationusing 4R's and 1U TSO.1. f Select criteria for factory automation and processes automation for a given industry. TSO.1. g Describe briefly different systems used for industrial automation. TSO.1.h Describe IOT, IIOT and role of robots with respect to automation.	Unit-1.0 Overview of Industrial Automation Introduction to Industry 4.0 and its components, Issues and challenges in automation Need of automation in industries, Principles and strategies of automation, factory automation, process automation Basic elements of an automated system, Structure of Industrial Automation Advanced automation functions, Levels of automations Industrial control Systems- Process and Discrete system Types of automation system: Fixed, Programmable, Flexible Integrated Automation and its application Different systems used for Industrial automation: PLC, HMI, SCADA, DCS, Drives. Introduction to Internet of Things (IoT) and Industrial Internet of Things (IIOT) and its application in Automation.	CO1
TSO.2. a Explain PLC and list its advantages over relay systems. TSO.2.b Distinguish between PLC and a PC, PLC and dedicated controllers. TSO.2.c List the types of PLCs and brands available in the market. TSO.2.d Describe the function of each block of a PLC with the help of a block diagram. TSO.2.e Describe the basic sequence of operation of a PLC with a simple example. TSO.2.f Explain different PLC programming languages withsimple examples. TSO.2.g Describe a simple PLC programming using ladder logic specifying I/O addressing TSO.2.h List the applications of PLC	Role of robots in automation and its components. Unit-2.0 Fundamentals of PLC Introduction to PLC, evolution of PLC Comparison of PLC and Personal Computer(PC) Comparison of PLC and dedicated controllers like PAC and CNC Types of PLC – Fixed, Modular and their types Different brands of PLCs available in the market Building blocks of PLC -CPU, Memory organization, Input-Output modules (Discrete and Analog) Specialty I/O Modules, Power supply PLC programming languages with simpleexamples: Functional Block Diagram (FBD), Instruction List. Structured text, Sequential Function Chart (SFC), Ladder Programming PLC I/O addressing in ladder logic Simple programming example using ladderlogic Applications of PLC: Traffic light control, Elevator control, Motor sequencing control, Tank level control, temperature control, Conveyor system control	CO2
TSO.3.a Identify the commonly used input field devices in PLC installations along with their symbols. TSO.3.b Draw symbol of various switches used in PLC installations describing the function of each switch. TSO.3.c Identify the various digital input devices used in a PLC installation. TSO.3.d Identify the commonly usedsensors as input field devices found in PLC	Unit 3.0 – Sensors and Input field devices Analog input devices-Electromagnetic relays, Contactors, Motor starters, Manually operated Switches Toggle switch, pushbutton switch, knife switch and selector switches Mechanically operated switches, Limit switch, Temperature switch (Thermostat), Pressure switch,	CO3

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
installations. TSO.3.e Describe the working of different types of discrete sensors giving their applications. TSO.3.f Describe the working of different types of advanced sensors giving their applications. TSO.3.g Select Sensors as per the given requirement for ecofriendly automation	Discrete/Digital Input device, Constructionand working of Sensors • Proximity sensors- Inductive, Capacitive, Optical and ultrasonic Advanced sensors- Construction and workingof • Temperature sensors- Thermistor, Thermocouple and Resistance temperature Detector (RTD) • Liquid level sensor -Capacitive and Ultrasonic • Force -Strain/Weight sensors • Flow sensors – turbine flow sensor • Pressure sensors- Linear Variable Differential Transformer (LVDT) • Inclination sensor -Inclinometer • Acceleration sensor- Accelerometer Angular and linear position sensor	
TSO.4.a Classify the actuators. TSO.4.b Describe the construction and working of a given actuator. TSO.4.c Explain the basic principle of operation of a given actuator. TSO.4.d Differentiate between hydraulic and pneumatic actuators TSO.4.e Explain the basic principle of operation of a given control valve. TSO.4.f Select actuators and valves as per the given requirement for ecofriendly automation. TSO.4.g Develop different hydraulic and pneumatic circuits for simple application. TSO.4.h Identify the commonly used output field devices in PLC installations TSO.4.i Draw the symbol of various output devices used in PLC installations describing the function of each. TSO.4.j Select output devices for a PLC installation as per the requirement.	Unit 4.0- Actuators and output devices Introduction to actuators, Classification ofactuators Mechanical actuators -Translational and rotation motion, kinematic chains, cams, gears, belt and chain drives, bearings Hydraulic and Pneumatic actuators- linear and rotary actuators, single and doubleacting cylinder, directional, process and pressure control valves Electrical actuators • Electromechanical actuators Construction, working and application of Stepper motors, AC/DC Servo motors, BLDC Motor (Very brief) • Electrohydraulic actuators-Construction, working and application of Electro- hydrostatic actuator (EHA), ON/OFF Electro-hydraulic Rotary Actuator (E2H90, Control Valve Rotary Actuator (E2HR), Solenoid valve Thermal actuators -Construction, workingand application of Hot-And-Cold-Arm Actuators, Chevron-Type Actuators Magnetic actuators- Construction, working principle and application of Moving coil actuators, moving magnet actuator, Moving iron actuator Selection criteria of actuators Other Output devices- Indicators, Alarms Pilot Lights, Buzzers, Valves, Motor starters, Horns and alarms, Stack lights Control relays, Pumps and Fans.	CO4
TSO.5.a Describe the basic process control system with the help of a block diagram TSO.5.b Explain the types of control available in a process control TSO.5.c Describe the different types of controllers in a closed loop systemwith the help of a block diagram TSO.5.d Describe the construction, working and application of a given control system components.	Unit 5.0– Control System Block diagram of a basic control system Open and closed loop system, their transfer function First order and second order system and their output response and parameters Different types of inputs-step and ramp Types of control – On-off, Feed forward, Open loop and closed loop control and Transfer function Controllers in closed loop control	CO5

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
	 Proportional Controller (P Controller) 	
	 Integral Controller (I Controller) 	
	 Derivative controller (D- Controller) 	
	P-I Controller	
	P-D Controller	
	PID Controller	

Note: One major TSO may require more than one theory session/period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504F

Practical/Lab Session Outcomes (LSOs)		Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1 Identify various building blocks and major automation components in a given robotic system LSO 1.2 Identify various building blocks and major automation components in a given electrical drives	1.	Identify major automation components in a given system	CO1
LSO 1.3 Analyze and plan the steps to automate the given system.	2.	Analyze given traditional machine in the laboratory for and identify thesteps and components required to automate it.	
LSO 1.4. Identify the building blocks of a given typical SCADA system LSO 1.5. Identify the symbol library of SCADA software	3.	Use Scada software for simple application	
LSO 2.1 Identify the various parts and front panel status indicators of the given PLC.	4.	Observe various parts and frontpanel indicators of a PLC	CO2
LSO 2.2 Identify different input and output devices that can be connected to a given PLC.	5.	Observe different types of switches and their symbols sensors, lamp, alarm, motor, fan used in a PLC	
LSO 2.3 Test the analog input and output lines of the given PLC.	6.	Identify Analog input and output lines of a PLC	
LSO 2.4 Test the digital input and outlines of the given PLC.	7.	Identify digital input and output lines of a PLC	
LSO 2.5 Use PLC to control the devices like Lamp, Alarm, motor using push button switches	8.	Practice using PLC to control various digital and analog output devices	
LSO 3.1. Test the response of digital inductive proximity sense or used to detect different types of materials	9.	Identify different types of digital inductive proximity sensor and itsuse	CO3
LSO 3.2. Test the response of digital capacitive proximity sensors used to detect o different materials	10.	Identify different types of digital capacitive proximity sensor and itsuse	
LSO 3.3. Test the response of digital optical proximity sensor used to detect different materials	11.	Identify different types of digital optical proximity sensor and its use	
LSO 3.4. Test the response of digital ultrasonic proximity sensors used to detect different materials	12.	Identify different types of digital ultrasonic proximity sensor and itsuse	
LSO 3.5. Use thermistor to measure temperature of a given material	13.	Identify different types ofthermistor and its use	
LSO 3.6. Use Thermocouple to measure the temperature of a given liquid and plot the output voltage versus temperature	14.	Observe the conversion of temperature to electric parameter conversion of a Thermocouple	
LSO 3.7. Use RTD to control the temperature of an oven	15.	Observe different types of RTDs usedin industries for temperature	

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles measurement	Relevant COs Number(s)
LSO 3.8. Use flow sensors to measure the flow of a given liquid or gas	16.	Observe different types of flow sensors used in industries for flow measurement	
LSO 3.9. Use pressure sensors to measure the pressure of a liquid or gas	17.	Observe different types of pressure sensors used in industries for pressure measurement	
LSO 3.10. Use load cell for measurement of mechanica force/weight.	l 18.	Observe the different types of loadcell used in industries for force/weight measurement	
LSO 4.1 Design and actuate pneumatic circuit for lift control LSO 4.2 Design a pneumatic system that rivets the pockets on jeans LSO 4.3 Design pneumatic circuit to open and close the security gate and control the speed. LSO 4.4 Design a circuit for speed control of hydraulic motor meter out circuit by using 4/3 DC valve. LSO 4.5 Design a circuit for speed control of double acting cylinder meter in by using 4/2 dc solenoid valve. LSO 4.6 Designing a circuit for speed control of double acting cylinder meter out by using 4/3 solenoid valve		Design and actuate pneumatic/ hydraulic circuit for the given situation	CO4
LSO 4.7 Direct acting of hydraulic motor	20.	Operate hydraulic motor	
LSO 4.8 Operate stepper motor and control the motor by changing number of steps, the direction of rotation and speed.		Operate stepper motor	
LSO 4.9 Identify the components of thermal and magnetic actuators available in the laboratory. LSO 4.10 Use thermal and magnetic actuators	22.	Thermal and magnetic actuators	
LSO 5.1 Test the output response of a open loop closed loop and feed forward path	23.	Analyze the given system to studyopen loop, closed loop and feed forward path.	CO5
LSO 5.2 Build and test the output response of a first order system for a step input using a CRO	t 24.	Analyze the given first order system and its transfer function and output response	
LSO 5.3 Build and test the response of a second order system for a step input using CRO. Also mark various parameters	25.	Analyze the given second order system and its transfer function andoutput response	
LSO 5.4 Test the Output response of an on- off and Proportional control-based level control system.	26.	Analyze the given water level control system with on-off, Proportional control.	
LSO 5.5 Test the Output response pf a P+I+D based level control system.	27.	Analyze the given water level control system with P+I+D control.	

- L) Suggested Term Work and Self Learning: S2400504F Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - i. State three advantages of using programmed PLC timer over mechanical timing relay.
 - ii. Prepare a list of open source PLC software
 - iii. Prepare a list of open source SCADA software.
 - iv. List the practical applications of PLC systems
 - v. List the practical applications of SCADA systems.
 - vi. Compare the PLC and PC with regard to:
 - Physical hardware differences
 - Operating environment
 - Method of programming
 - Execution of program
 - vii. Prepare classification chart of different types of actuators.
 - viii. Differentiate between Nano and micro actuators.

b. Micro Projects:

- 1. Develop a relay-based motor control automation such that the motor reverses its direction when the limit switches are activated.
- 2. Develop a simulation to connect analog and digital input to the PLC.
- 3. Develop a simulation to connect analog and digital output to the PLC.
- 4. Develop a simple automatic water level controller using magnetic float switch.
- 5. Develop a simple automatic door system using optical sensor and linear actuator.
- 6. Troubleshoot the faulty equipment/kit available in automation laboratory
- 7. Select one industry and analyze the process and propose the automation strategies' that can be used for automation.
- 8. Develop a working model of a given application using given actuators and valves.

c. Other Activities:

- 1. Seminar Topics- PLC architecture, Different types of sensors, Industrial Applications of PLC and SCADA
- 2. Visits Visit any industry with full or semi automation and prepare a report on type of automation used.
- 3. Surveys-Carry out a market/internet survey of PLC and prepare the comparative technical specifications of any one type of PLC (Micro or Mini) of different manufacturer.
- 4. Product Development- Develop a prototype automatic railway crossing system
 Software Development- Download any open source software for PLC and install on your laptop/PC and carry out basic PLC programming
- 5. Surveys carry out market survey for different types of electrical actuators available and prepare the comparative technical specifications of electrical actuators used in industries.
- Visit industry and prepare a report on different types of hydraulic and pneumatic circuits used by the industry in the given section, components used, power requirement, output achieved and maintenance activities required.

d. Self-Learning Topics:

- 1. Use of PLC for different industrial applications
- 2. Use of sensors in commercial field
- 3. Use of sensors in home automation
- 4. Compare Specifications of PLCs of different manufacturers of any one type PLC

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be used to calculate CO attainment.

			Co	urse Evalua	tion Matrix				
Theory Assessment (TA)**			Term Wor	Term Work Assessment (TWA)			Lab Assessment (LA)#		
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Wo	ork & Self-Le Assessmen	Ū	Progressive Lab	End Laboratory Assessment		
	Class/Mid Sem Test		Assignments	Micro Projects	Other Activities*	(PLA)	(ELA)		
	Sem rest								
CO-1	15%	15%	20%		30%	20%	20%		
CO-2	20%	25%	20%		20%	25%	20%		
CO-3	25%	20%	20%	30%	20%	20%	20%		
CO-4	25%	20%	20%	20%	30%	20%	20%		
CO-5	15%	20%	20%	50%		15%	20%		
Total	30	70	20	20	10	20	30		
Marks			50						

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N) #: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Un	it Title and Number	Total	Relevant	Total		ETA (Marks)	
		Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0	Overview of Industrial Automation	8	CO1	11	3	4	4
Unit-2.0 Fundamentals of PLC		12	CO2	17	5	5	7
Unit-3.0	Sensors and Input field devices	9	CO3	14	4	6	4
Unit-4.0	Actuators and output devices	10	CO4	14	4	6	4
Unit- 5.0 Control system		9	CO5	14	4	5	5
Total Marks		48		70	20	26	24

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant	PLA /ELA			
C No	Labouatous Buostical Titles	Cos	Perforn	nance	Viva-	
S. No.	Laboratory Practical Titles	Number	PRA*	PDA**	Voce	
		(s)	(%)	(%)	(%)	
1.	Identify major automation components in a given system	CO1	50	40	10	
2.	Analyze given traditional machine in the laboratory for and identify the steps and components required to automate it.	CO1	50	40	10	
3.	Use Scada software for simple application	CO1	50	40	10	
4.	Observe various parts and front panel indicators of a PLC	CO2	50	40	10	
5.	Observe different types of switches and their symbols sensors, lamp, alarm, motor, fan used in a PLC	CO2	50	40	10	
6.	Identify Analog input and output lines of a PLC	CO2	50	40	10	
7.	Identify digital input and output lines of a PLC	CO2	50	40	10	
8.	Practice using PLC to control various digital and analog output devices	CO2	50	40	10	
9.	Identify different types of digital inductive proximity sensor and its use	CO3	50	40	10	
10.	Identify different types of digital capacitive proximity sensor and its use	CO3	50	40	10	
11.	Identify different types of digital optical proximity sensor and its use	CO3	50	40	10	
12.	Identify different types of digital ultrasonic proximity sensor and its use	CO3	50	40	10	
13.	Identify different types of thermistor and its use	CO3	50	40	10	
14.	Observe the conversion of temperature to electric parameter conversion of a Thermocouple.	CO3	50	40	10	
15.	Observe different types of RTDs used in industries for temperature measurement	CO3	50	40	10	
16.	Observe different types of flow sensors used in industries for flow measurement	CO3	50	40	10	
17.	Observe different types of pressure sensors used in industries for pressure measurement	CO3	50	40	10	
18.	Observe the different types of load cell used in industries for force/weight measurement	CO3	50	40	10	
19.	Design and actuate pneumatic/ hydraulic circuit for the given situation	CO4	50	40	10	
20.	Operate hydraulic motor	CO4	50	40	10	
21.	Operate stepper motor	CO4	50	40	10	
22.	Thermal and magnetic actuators	CO4	50	40	10	
23.	Analyze the given system to study open loop, closed loop and feed forward path.	CO5	50	40	10	

		Relevant	PLA/ELA			
C No	Labouatow, Buostical Titles	Cos	Perform	Viva-		
S. No.	Laboratory Practical Titles	Number	PRA*	PDA**	Voce	
		(s)	(%)	(%)	(%)	
24.	Analyze the given first order system and its transfer function	CO5	50	40	10	
	and output response					
25.	Analyze the given second order system and its transfer function	CO5	50	40	10	
	and output response					
26.	Analyze the given water level control system with	CO5	50	40	10	
	on-off, Proportional control.					
27.	Analyze the given water level control system with P+I+D	CO5	50	40	10	
	control.					

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ ImplementationStrategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	SCADA software (reputed make like Allen Bradley, Siemensetc.,)	Ready-to-use symbol library, React and respond in real-time, Real time monitoring, Friendly, manageable, secure, extensible, Easy-to-use, easy to implement, Easy configuration, simplified maintenance, Communication with PLC, easy and flexible alarm definition, data collection and analysis for new and existing systems, easy-to-use for report generation, open access to historical data, different packages available with input/output structure. Open source software SCADA software: like Ellipse/FTVSE/Wonderware/ open SCADA can also be used	3
2.	Universal PLC Training System with HMI (Of reputed make such as Allen bradely, Siemens, etc.,) Compatible with SCADA software	Human Machine Interface (HMI) display, PLC with 16 digital inputs, 16 digital outputs with RS232 communication facility. Open platform to explore wide PLC and HMI applications. Industrial look & feel. Toggle switches, push to ON switch, proximity sensor, visual indicator, audio indicator, and DC motor. Experiments configurable through patch board. Powerful instruction sets. Several sample ladder and HMI programs. PC based ladder and HMI programming. Extremely easy and student friendly software to develop different programs. Easy downloading of programs. Practice troubleshooting skills. Compact tabletop ergonomic design. Robust construction. PLC gateway for cloud connectivity. Open source software like Ladder logic simulator, Pico soft Simulator, Logixpro simulator, Simple EDA tools can also be used	4,5,6,7,8

-	Name of Favinment Tools	Broad Specifications	Polovont
S.	Name of Equipment, Tools	Broad Specifications	Relevant
No.	and Software		Experiment/Practical
			Number
3.	Proximity sensors kit	The kit should comprise of the following proximity sensor -	9,10,11,12
		Inductive Proximity Sensor, Capacitive Proximity Sensor,	
		Magnetic Sensor, Optical Sensor, Audio and LED indicator	
		for the	
		object detection. Along with learning material	
4.	Temperature transducer	Temperature Transducers Test Bench includes different	12,13,14
	kit	types of temperature sensors including bimetallic strip,	
		RTD, thermocouple, thermistor, RTD/thermocouple	
		temperature display and thermistor, temperature display,	
		heater, fan, switches and its indicator. Separate heater and	
		fan chamber withstand.	
		On panel digital voltmeter, digital ammeter,	
		RTD/thermocouple temperature display, NTC temperature	
		display, toggle switch for heater and fan with indicator,	
		experiments configurable throughpatch board, heavy duty	
		Test bench, castor wheel (with locking	
		mechanism) is provided at legs of Test bench so that it can	
		be easily moved, enhanced electrical safety consideration.	
5.	Pressure transducer kit	Pressure transducer kit should include different types of	16
		pressure sensors including capacitive pressure transducer,	
		load cell, bourdon tube pressure gauge, and pressure	
		vessel. Pressure vessel with pressure gauge, safety valve,	
		non-returning valve bourdon gauge and capacitive	
		transducer and air compressor, on panel digital voltmeter,	
		digital ammeter, 4-20ma display, 0- 10V DC display, toggle	
		switch for compressor, load cell with suitable weight,	
		experiments configurable through patch board, self -	
		contained, bench-mounting arrangement, castor wheel	
		(with locking mechanism) is provided at legs of Test bench	
		so that it can be easily moved, enhanced electrical safety	
		consideration. Detailed experiment manual should be	
		supplied	
-	et to	with the kit.	45
6.	Flow sensor kit	Turbine flow sensor kit	15
7.	Strain Gauge kit	The kit should provide study of Strain Gauge and their	17
		application for measurement of Strain. It should help to	
		study bridge configuration of Strain Gauge and the signal	
		conditioning circuits required to measure strain. It should	
		use cantilever beam arrangement to produce strain on	
		Strain Gauge. The Strain Gauges are firmly cemented to the	
		cantilever at the point wherethe strain is to be measured.	
		Weights are placed on free end of cantilever. Strain	
		developed changes the resistance of Strain Gauge which is	
		detected by full bridge configuration. It should comprise of	
		Seven-segment LED display showing strain in micro strain	
		units. Different weights should be provided to perform	
		linearity and sensitivity experiments. Detailed experiment	
		manual should be supplied with the kit. Test-points to	
		observe input output of each block, onboard gain and	
		offset null adjustment, built in DC Power Supplies, 3½ digits	
		LED display, onboard Cantilever arrangement, high	
		repeatability and reliability	
		The kit should be capable of performing following	
		experiments:	
		Measuring strain using strain gauges and	
		cantileverassembly.	

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
		Determination of linear range of operation of strainmeasurement. Determination sensitivity of the kit	Number
8.	Cut sections of pumps, actuators, valves and accessories used in hydraulic systems	Suitably cut and mounted on a sturdy base to show the internal details.	18
9.	Working models of pumps, actuators, valves and accessories used in hydraulic systems	Working models mounted on sturdy base to demonstrate theoperation.	18
10.	Working models of pumps, actuators, valves and accessories used in pneumatic systems	Working models mounted on sturdy base to demonstrate theoperation.	18
11. 8	Oil Hydraulic trainer	Mounted on sturdy base fitted with all standard units andaccessories to create various hydraulic circuits. Hydraulic trainer with simulation software Pneumatic trainer with simulation software • Filter Regulator Combination with Lubricator (FRL Unit) withpressure gauge, Junction Box with slide valve, Push Button Valve, 3/2 NC Roller lever valve ,3/2 NC Roller lever valve ,5/2 Double external pilot operated valve, 5/2 External pilot operated valve with spring return, 5/2 Hand lever with spring return, 5/2 Hand lever valve with detent – for maintained pilot operation of a SAC, 5/2 Valve with Lever head, 5/2 Value with Mushroom head, Flow control valve – Metering IN & OUT, Shuttle Valve (OR valve), Quick ExhaustValve with Quick coupler plug • Double Acting Cylinder (DAC) with Quick coupler socket (with accessories: Screw driver – for cushioning adjustment), Single Acting Cylinder (SAC), Swivel fitting assembly with Quick coupler plug, Multi distributor fittings (for cascading circuit designing) • Single Solenoid Valve with Spring Return (with LED), Double Solenoid Valve (with LED), Magnetic Reed Switch, Magnetic Reed Switch, Relay Logic Unit – 2C/0-3 relays, Electrical Push Button Unit, Electrical Selector Switch Unit, Timer	18
12.	Pneumatic Trainer	Push Button Unit, Electrical Selector Switch Unit, Timer Mounted on sturdy base fitted with all standard units and accessories to create various Pneumatic circuits. Pneumatic trainer with simulation software • Filter Regulator Combination with Lubricator (FRL Unit) with pressure gauge, Junction Box with slide valve • Push Button Valve, 3/2 NC Roller lever valve, 3/2 NC Roller lever valve, 5/2 Double external pilot operated valve (Memoryvalve) • 5/2 External pilot operated valve with spring return, 5/2 Hand lever with spring return, 5/2 Hand lever valve with detent, 5/2 Valve with Lever head ,5/2 Value with Mushroom head, Flow control valve, Shuttle Valve (OR valve), AND valve • Quick Exhaust Valve with Quick coupler plug, Double	18
		Acting Cylinder (DAC) with Quick coupler socket, Single Acting Cylinder (SAC), Swivel fitting assembly with Quick coupler plug	

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
		 Aluminum Profile Table Top, Profile Table Top, Miniature Double Acting Cylinder (DAC), Single Solenoid Valve with Spring Return, Double Solenoid Valve (with LED) Magnetic Reed Switch, Relay Logic Unit – 2C/0-3 relays, Electrical Push Button Unit, Electrical Selector Switch Unit (Black Selector – 1 no, Green Push Button – 1 no), Timer, Simulation software 	
13.	Advanced Electro - Hydraulic and Electro - Pneumatic Hardware systems with work stationsand simulation software	Electro - Hydraulic and Electro - Pneumatic Hardware systemswith PLC and simulation software Profile plate, Frame with Castor Wheels, Filter, Lubricator, Regulator with pressure gauge, Hand Slide Valve, Connectioncomponent set, Plastic Tubing, Power Supply & cables, Pressure Gauge, 3/2 Way double solenoid valve	18
14.	Output devices	Servomotor, DC motor, AC motor, stepper motor, Conveyer Belt control by PLC, water level control etc.	18,19,20
15.	Thermal actuators	Hot-And-Cold-Arm Actuators, Chevron-Type Actuators	21
16.	Magnetic actuators	Moving Coil Controllable Actuators, Moving Iron ControllableActuator	21
17.	Open and closed loop control system kit	Open and closed loop system kit should be able to measure theoutput response using CRO	22
18.	First and second order control system	First and second order system with input and output terminalsprovision	23,24
19.	Process control system with feed forward path kit	Process control system with feed forward path kit with input and output terminals provision	22
20.	PID Controller Test Bench	PID Controller Test Bench is a complete setup to control process through two-point (on/off) and three-point (PID) controllers. Industrial PID controller with RS485 communication facility, Thermocouple temperature sensor, Float switch for detection of water level, Temperature measurement and control, User friendly software, USB Interface, Heavy duty Test bench, Electrical control panel, Leak proof sturdy piping and tanks, SS Sump tank for inlet and outlet of water, Enhanced electricalsafety considerations, Caster wheel (with locking mechanism) at the legs of Testbench for easy movement.	25,26

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
1.	Introduction to Programmable Logic Controllers	Dunning, G.	Thomson /Delmar learning, New Delhi, 2005,ISBN13: 9781401884260
2.	Programmable Logic Controllers	Petruzella, F.D.	McGraw Hill India, New Delhi, 2010, ISBN:9780071067386
3.	Programmable Logic Controllers	Hackworth, John; Hackworth, Federic	PHI Learning, New Delhi, 2003, ISBN:9780130607188
4.	Industrial automation and Process control	Stenerson Jon	PHI Learning, New Delhi, 2003, ISBN: 9780130618900

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
5.	Programmable Logic Controller	Jadhav, V. R.	Khanna publishers, New Delhi, 2017, ISBN: 9788174092281
6.	Programmable Logic Controllers and Industrial Automation - An introduction,	Mitra, Madhuchandra; Sengupta, Samarjit,	Penram International Publication, 2015,ISBN: 9788187972174
7.	Control System	Nagrath & Gopal	New Age International Pvt Ltd, ISBN:9789386070111, 9789386070111
8.	Linear Control Systems with MATLAB Applications, Publisher:	Manke, B. S.	Khanna Publishers, ISBN: 9788174093103,9788174093103
9.	Supervisory Control and Data Acquisition	Boyar, S. A.	ISA Publication, USA, ISBN: 978- 1936007097
10.	Practical SCADA for industry,	Bailey David; Wright Edwin	Newnes (an imprint of Elsevier), UK 2003,ISBN:0750658053

(b) Online Educational Resources:

- 1. Process Automation Control- online Tutorial: www.pacontrol.com
- 2. PLC product: www.seimens.com
- 3. www.ab.rockwellautomation.com
- 4. PLC product: www.abb.co.in
- 5. Different product of PLC and Peripherals, Smart Tile CPU Board, All in one lighting energy controller, Classic PLC www.triplc.com
- 6. Simulation software:http://plc-training-rslogix-simulator.soft32.com/free-download/
- 7. Simulator:www.plcsimulator.net/
- 8. https://www.youtube.com/watch?v=y2eWdLk0-Ho&list=PLln3BHg93SQ_X5rPjqP8gLLxQnNSMHuj-
- 9. https://www.youtube.com/watch?v=86CrhxgAKTw

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Lab Manuals

A) Course Code : 2400504G(T2400504G/P2400504G/S2400504G)

B) Course Title : Electric Vehicle (Basic)

C) Prerequisite Course(s) :
D) Rationale :

Fossil fuel consumption and its adverse impact on the environment have led most nations in the world to adopt electric vehicles for mobility. Most automobile companies are switching from internal combustion engines to electric, a cleaner, and more sustainable alternative. But, in the present scenario, the automobile industries are facing a shortage of skilled technicians needed for the transition to electric drives as the primary source of motive power. There is a huge skill gap between industry and academia when it comes to the task of taking the entire automobile industry towards electric mobility. Therefore, this basic course on an electric vehicle is included in the curriculum of the diploma programme as an open elective course to fill this gap and gain a basic understanding of the importance and necessity of electric vehicles. This course tends to enable participants with multidisciplinary exposure and give them a brief idea about electric vehicles, and their importance. This course gives some basic technical foundations regarding electric vehicles to help them move on to advanced electric vehicle courses.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of the following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the student will be able to-

- **CO-1** Classify the EVs based on configurations.
- **CO-2** Identify relevant Motors for the given EV application.
- **CO-3** Test the performance of batteries used for EV applications.
- **CO-4** Distinguish between the EV Charging stations based on their Configurations.
- **CO-5** Follow regulatory requirements and policies for EV Industry.

F) Suggested Course Articulation Matrix (CAM):

Course	Programme Outcomes (POs)								Programme Specific Outcomes* (PSOs)	
Outcomes (COs)	PO-1 Basic and Discipline- Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Developme ntof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	
CO-1	3	2	-	2	2	-	3			
CO-2	3	2	2	2	2	1	3			
CO-3	2	2	3	3	2	2	3			
CO-4	2	2	1	2	2	1	2			
CO-5	1	1	-	-	3	1	2			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Scheme of Study (Hours/Week)							
Course Course Title		Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Total Hours Credi (CI+LI+TW+SL) (C)	
		L	T				
2400504G	Electric Vehicles (Basic)	03	-	04	02	09	06

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method,

Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

Li: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

		Assessment Scheme (Marks)							
se Code		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)	
Course	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA	
2400504G	Electric Vehicles (Basic)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at the course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to the attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020-related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.
- J) Theory Session Outcomes (TSOs) and Units: T2400504G

N	Major Theory Session Outcomes (TSOs)	Units	Relevant COs
			Number (s)
TSO 1a. I	Identify the types of the vehicle based on the	Unit-1.0 Introduction to Electric Vehicle	CO1
TSO 1b. 5	physical features, specification data and information. State the advantages of EVs over Conventional IC		552
	Engine Vehicles. Identify different components of Electric Vehicle	Electric Vehicle (EV)	
	systems	The necessity of Electric Vehicle	
TSO 1d. I	Explain the functions of different components of the EV	 Types of Electric Vehicles Plug-in hybrid Battery electric vehicle Hybrid electric vehicle Fuel Cell Electric Vehicle 	
		 Advantages of Electric Vehicles Electric Vehicle Components: Motor, 	
		Motor Controller, Battery, Battery	
		Management System, and	
		ChargingSystem.	
TSO 2a.	Explain the general characteristics of motorsused in EV	Unit-2.0 Electric Motors used in EVs	CO2
TSO 2b.	List different types of motors used in EV	Electric Motors for EV applications	
TSO 2c.	Explain the working principles of motors used in EV applications	General Characteristics of motorsTypes of Motors: DC, Brushless DC,	
TSO 2d.	Interpret the nameplate ratings of the	Induction, Permanent	
TSO 2e.	motorsfor EV applications. Explain the motor selection criteria	Magnet Synchronous Motors, SwitchedReluctance	
130 26.	forparticular EV applications.	Motors	
TSO 2f.	Describe the Mechanical and	Rating of Motors	
	ElectricalConnections of Motors.	Selection Criteria	
		Physical Location	
		Connection of Motors: Mechanical	
TCO 2-	List the heathering would be EV. for any one	Connections and Electrical Connections	603
TSO 3a.	List the batteries used in EVs for energy storage	Unit- 3.0 EV Batteries and Energy Storages	CO3
TSO 3b.	State various parameters related to batteries used in EV applications.	Types of Batteries: Lead Acid, Nickel Based, Lithium Based	
TSO 3c.	Explain the charging and discharging process	Battery Parameters	
	ofthe given batteries.	Charging (AC) and Discharging (DC) Process	
TSO 3d.	Explain the salient features of Lithium	Lithium Ion Batteries	
TCO 2	Ionbatteries	Fuel Cells, Fuel Cell Storage System	
TSO 3e. TSO 3f.	Explain the Fuel Cell Storage System. Identify various sensors installed for	Battery Condition Monitoring Battery Management System (BMS)	
130 31.	monitoringBattery condition.	Need of BMS	
TSO 3g.	Explain Battery Management System in EV	Block Diagram of BMS	
	usingBlock Diagram.	Battery Disposal and Recycling	
TSO 3h.	Describe the procedure of battery Disposal and Recycling		
TSO 4a.	Identify different types of diodes andtransistors.	Unit- 4.0 EV Charging Systems	CO4
TSO 4b.	Describe the testing procedure for the given Diode and Transistor.	Power electronics in EV • Power electronics components	
TSO 4c.	Explain the working principles of the	Rectifiers	
	givenpower electronic converter circuit.	DC to DC Converter	
TSO 4d.	Describe the types of Charging Systems	DC to AC Converter	
TSO 4e.	Describe different Components of the	Charging System	
TSO 4f.	ChargingSystem Explain the working of the Charging Systemusing a single-line diagram.	 Types of charging Systems Components of Charging Systems Single line Diagram of 	
		Charging System	

N	lajor Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
TSO 5a.	Understand the Rules and Regulations set by the Government for selecting and manufacturing various components of an	Unit- 5.0 Regulatory Requirements and Policies for EV Industry	CO5
TSO 5b. TSO 5c.	electric vehicle. Understand the Policies for E-Vehicles. Appreciate the importance of the reduction ofgreenhouse gases in the environment.	Rules and Regulations set by the Indian government for the designer/manufacturer of EVs. Policies in India Global Policies for E- Vehicles. Carbon Footprint Issues	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504G

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)
LSO 1.1 Use the relevant digital meter for the given application. LSO 1.2 Use a measuring instrument for the given application. LSO 1.3 Use safety kits while working in the laboratory.	1.	 Practice using digital meters such as AC, DC Clamp Meters, Digital Multimeters, Lux Meters, etc. Practice using Screw Driver Kit, Vernier Caliper, Micrometer, Ampere Meter, Voltage Meter, and Techno-meter. Practice using safety kits. 	CO1
LSO 2.1 Identify the motors used in EV applications LSO 2.2 Identify the given motor terminals	2.	Identification of motors used in EVs	CO2
LSO 3.1 Identify the batteries available in the laboratory. LSO 3.2 Measure an open circuit voltage of the given battery. LSO 3.3 Determine the Ampere -Hour Capacity of the given battery with a given load. LSO 3.4 Test the performance of the given battery with different charging rates and at different ambient temperatures LSO 3.5 Demonstrate the effect on the state of health of the battery after several charge/discharge cycles. LSO 3.6 Evaluate the temperature cut-off point for the given BMS.	3.	 Testing of Batteries used in EVs Battery Management System 	CO3
LSO 4.1 Identify the Electrical & Electronics components available in the laboratory using Digital Multimeters. LSO 4.2 Test the given power electronic components using digital meters LSO 4.3 Identify the given Power Electronic Circuits used in EVs LSO 4.4 Identify the components of the Charging System LSO 4.5 Recognize the types of Charging Systems available in the Laboratory	4.	Power electronic circuits Identification of Charging systems	CO4

L) Suggested Term Work and Self-Learning: S2400504G Some sample suggested assignments, micro project and other activities are mentioned here for reference.

a. Assignments: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Collect the information related to the performance of different types of electric vehicles and prepare a comparative report on economic and environmental analysis.
- 2. Collect specifications of different EVs available in the market.
- 3. Build and test a prototype circuit of converters used in an electric vehicle.
- 4. Visit a nearby Electric vehicle showroom or service centre & collect information on different types of motors used in electric vehicles and prepare a comparative report on their performance,
- 5. Visit a nearby charging station and prepare a report describing the layout and components of the charging station.

c. Other Activities:

1. Seminar Topics:

- Communication Systems, Sensors and batteries used in Evs.
- Technological advances in Evs
- Comparison of EVs manufactured by different companies.
- 2. **Surveys** Survey the market and gather information on the electric vehicle manufacturers and submit the report.
- 3. **Product Development** Develop an electric vehicle prototype using locally procured hardware components.

d. Self-Learning Topics:

- Global Manufacturers of EV
- Indian Manufacturers of EV
- Motors used in EV
- Batteries used in EV
- Cost comparison of EVs in market
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use the appropriate assessment strategy and its weightage, in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix										
	Theory Asses	sment (TA)**	Term Wo	rk Assessme	nt (TWA)	Lab Assessment (LA)#					
Drogressive End Theory				Term Work & Self-Learning Assessment		Progressive LabAssessment	End Laboratory				
	Class/Mi		Assignments	Micro	Other Activities*	(PLA)	Assessment				
	dSem			Projects			(ELA)				
	Test										
CO-1	20%	15%	20%		33%	10%	20%				
CO-2	20%	20%	20%		33%	15%	20%				
CO-3	20%	30%	20%		34%	15%	20%				
CO-4	20%	25%	20%	50%		30%	20%				
CO-5	20%	10%	20%	20% 50%		30%	20%				
Total	30	70	20	20	10	20	30				
Marks				50	'						

Legend:

* : Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

** : Mentioned under point- (N)

: Mentioned under point- (O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total			
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Introduction to Electric Vehicle	8	CO1	12	3	5	4
Unit-2.0 Electric Motors used in EVs.	10	CO2	14	4	5	5
Unit- 3.0 EV Batteries and Energy Storages.	14	CO3	20	5	7	7
Unit- 4.0 EV Charging Systems	10	CO4	15	5	6	4
Unit- 5.0 Regulatory Requirements and Policies for EV Industry	6	CO5	9	3	4	3
Total Marks	48		70	20	27	23

Note: Similar table can also be used to design class/mid-term/ internal question papers for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant	PLA/ELA				
S.	Laboratory Practical Titles	COs	Perfo	rmance	Viva-		
No.	Education y Tractical Traces	Number(s)	PRA* (%)	PDA** (%)	Voce (%)		
1	Practice using digital meters such as AC, DC Clamp Meters, DigitalMultimeters, Lux Meters, etc.	CO1	90	-	10		
2	Practice using Screw Driver Kit, Vernier Caliper, Micrometer, Ampere Meter, Voltage Meter, and Techno-meter.						
3	Practice using safety kits.						
4	Identification of motors used in EV	CO2	60	30	10		
5	Testing of Batteries used in EVs	CO3	60	30	10		
6	Battery Management System						
7	Power electronic circuits	CO4	30	60	10		
8	Identification of Charging systems						

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to beprepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Labs, and Field, Information and Communications Technology (ICT)Based, Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	AC, DC Clamp Meters	Application: Non-contact AC/DC Voltage and Current measurement AC Application: Current: 0-200Amp, Voltage: 0-600Volt DC Application: Current: 4-20mA, Voltage: 0-30Volt.	1
2.	Digital Multimeters	Display: 4 ½ digit Indications: overload protection, polarity indication, over range indication. Auto range change and auto polarity change facility, auto display of polarity and decimal point. DC: Volt: 200mV-600V, Current: 200mA-2A AC: Volt: 200mV-1000V, Current: 200mA-2A Resistance: 200W-20mW, Power supply: 230V, 50Hz Battery operation: 9 Volt battery Electronic components testing facility should be provided in the Multimeter. A provision for an A.C. adaptor(eliminator) must be available along with the multimeter.	1, 3
3.	Lux Meters	Functions: MAX / MIN, Backlight, Auto Power Off Range: 0 ~ 200,000 lux 0 ~ 20,000 fc Accuracy: ± 5% rdg + 10 dgt (< 10.000 lux / fc) ± 10% rdg + 10 dgt (>10.000 lux / fc) Resolution: 0.1 lux or 0.1 fc Accessories: Carrying Case, Installation Manual, 9V Battery (installed).	1
4.	Screw Driver toolbox	All types of screw drive sets.	1
5.	Vernier Caliper	Range: Lower scale: 0-200mm, Upper Scale: 0-12inch Vernier Resolution: Lower Scale: 0.02mm, Upper Scale: 0.001inch	1
6.	Micrometer	0-25mm (inside/outside)	1
7.	Ampere Meter	Moving iron and Moving Coil	1
8.	Voltmeter	AC(0-250V)/DC(0-24V)	1
9.	Tachometer	For speed measurement (0-3000rpm)	1
10.	Resistors	Low-value Resistors of different types	1,4

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
11.	Capacitors	Low-value electrolyte Capacitors.	1,4
12.	Inductors	Low-value inductors.	1,4
13.	Safety Kit	First Aid Kit, Helmet, Face Mask, Gloves etc.	1
14.	Motors for Electric Vehicleapplication	Brushless DC, Induction, Permanent Magnet Synchronous Motors, Switched Reluctance Motors	2
15.	EV Machine Cut-out section	for demonstration & training	2
16.	EV mock layout	for demonstration & training	2
17.	Lithium Ion Battery	12V, 7Ah	3
18.	Lead-acid battery	12V, 7Ah	3
19.	Nickel-based batteries (metal hydride and cadmium battery).	12V, 7Ah	3
20.	Battery internal resistance meter	For O.C. voltage & internal battery resistance of each cell	3
21.	Cell Capacity tester	Up to 15V batteries and 3A load current, 10mV voltage and 1mA current resolution, Automatic detection of termination voltage, LED display with a 3-button interface.	3
22.	BMS setup	For Demonstration & training	3
23.	DC power supply	0-32V	3
24.	Power diodes	Power diodes of different current values.	1, 4
25.	Transistors	Power Transistors (NPN, PNP) for Low-frequency high- power applications.	1,4
26.	Voltage Sensors	0-12 Volts.	1,3,4
27.	Current Sensors	Volts: + 15v, 0-5v, Current: 4-20mA.	1,3,4
28.	Converter Models	DC to DC and DA to AC converter model	4
29.	Charging Station Simulator	For Demonstration & training purposes.	4
30.	EV Technology layout 3D posterwith frame	Fuel cell, EV- Charging Systems, HEV, FCEV, Motors & Controllers etc.	3,4

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author (s)	Publisher and Edition with ISBN
1.	Handbook on Electric Vehicles Manufacturing (E-Car, Electric Bicycle, E- Scooter, E-Motorcycle, Electric Rickshaw, E- Bus, Electric Truck with Assembly Process, Machinery Equipment's &Layout)	P.K. Tripathi	Niir Project Consultancy Services; 1st edition (1 January 2022) ISBN-13: 978-8195676927
2.	Electric Vehicles: And the End of the ICE age	Anupam Singh	Kindle Edition ASIN: B07R3WFR28
3.	Wireless Power Transfer Technologies for Electric Vehicles (Key Technologies on New Energy Vehicles)	Xi Zhang, Chong Zhu, Haitao Song	Springer Verlag, Singapore; 1st ed. 2022 edition (23 January 2022) ISBN-13: 978-9811683473
4.	Modern Electric, Hybrid Electric, and Fuel Cell Vehicles	EHSANI	CRC Press; Third edition (1 January 2019) ISBN-13: 978-0367137465
5.	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles	John G. Hayes, G. Abas Goodarzi	Wiley; 1st edition (26 January 2018) ISBN-13: 978-1119063643
6.	New Perspectives on Electric Vehicles	Marian Găiceanu (Editor)	IntechOpen (30 March 2022) ISBN-13: 978-1839696145

(b) Online Educational Resources:

- 1. https://www.energy.gov/eere/fuelcells/fuel-cell-systems
- 2. https://powermin.gov.in/en/content/electric-vehicle
- 3. https://www.iea.org/reports/electric-vehicles
- 4. https://www.oercommons.org/search?f.search=Electric+Vehicles

Note:

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Lab Manuals

A) Course Code : 2400504H(T2400504H/P2400504H/S2400504H)

B) Course Title : Robotics (Basic)

C) Pre- requisite Course(s) :
D) Rationale :

Currently, industries demand non-stop and fine quality work in different processes used. It is difficult for the human beings to give same quantity and quality of work with respect to time, environment and complexity of the work in any process industry. To get quality and quantity of work in toughest environment or the environment which is not suitable for the humans to work, industries demand for robots and its operator. Operators who will operate these robots need some basic knowledge of robotics. To fulfill the need of industries and looking to the advancement in technology, this course aims for the diploma engineers to have knowledge and skills in robotics.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Select robots for given applications employing basic concepts of design and functions of robots.
- **CO-2** Interpret co-ordinate systems and degree of freedom for robots.
- **CO-3** Use sensors and drives in context of various robotic applications.
- **CO-4** Select appropriate robot control techniques,
- **CO-5** Use programs to operate robots.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	-	3	-	2	2	2		
CO-2	3	2	1	2	-	-	-		
CO-3	3	2	1	2	2	-	2		
CO-4	3	1	1	2	-	-	-		
CO-5	3	2	3	3	2	3	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course				heme of Stud Hours/Week)	•		
Code	Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)	
		L	T					
2400504H	Robotics (Basics)	03	ı	04	02	09	06	

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			Α	ssessment S	Scheme (Ma	rks)		
e Code		Theory Ass (TA		Term W Self- Le Assess (TW	arning ment	Asses	ab sment A)	(TA+TWA+LA)
Course	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
2400504H	Robotics (Basic)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400504H

Major Theory Session Outcomes (TSOs)			Units	Relevant COs Number (s)
TSO 1a.	Explain the basic terms used in robotics	Unit-	-1.0 Basics of Robotics Systems	CO1, CO2
	Identify components used in robots. Explain various types of movements.	1.1	Definition, need, brief history of	
TSO 1d.	Distinguish various robots' configurations and their workspace. Evaluate the degrees of freedom of the given robot.	1.2	robotics Basic Robot terminology, configuration and its working Robot components overview - Manipulator, End effecters, Drive system,	
	Specify the methods of conversion of the given linear motion into rotary motion and vice-versa.	1.4	Controller, Sensors Basic structure of a Robot and Classification – Cartesian, Cylindrical, Spherical, Horizontal	
TSO 1g.	List the criteria for selecting robot for the given simple application with justification.		articulated (SCARA), Parallel; Mechanic al arm, Degree of freedom, Links and joints, Wrist rotation, Mechanical transmission-pulleys, belts, gears, harmonic drive (gear box) Linear and Rotary motion and its devices Selection criteria for robots	
TSO 2a.	Explain the working of various types of End	Unit-	- 2.0 Robot Components	CO3
	effecters used in robots with diagram. Explain with sketches the function of the given sensing device used in a robot.	2.1	End effecters: types, sketches, working and applications	
TSO 2d. TSO 2e.	Describe working of the given sensor used in robot. Explain the given robot configuration. Select relevant robot sensors for a given application with justification. Describe robot machine vision concepts	2.2	Sensing and Feedback devices: Optical sensors, Proximity sensors, LVDT, Thermocouple, RTD, Thermistor, Force sensing – strain gauge, Piezoelectric, Acoustic sensing Feedback devices;	
TSO 2g.	along with block diagram of robot vision system. Select vision equipment for a given robotic application.	2.3	Potentiometers; Optical encoders; DC tachometers; Robot machine vision: Block diagram of robot vision system, Vision equipment-camera, Imaging Components: Point, Line, Planar and Volume Sensors, Image processing, Part recognition and range detection	
TSO 3a.	Explain with sketches the function of the specified actuator used in a robot.	Unit-	- 3.0 Robotic Drive System and Controller	CO4
	Differentiate between open loop and closed loop systems. Explain various robotic controls.	3.1	Actuators; Hydraulic, Pneumatic and Electrical drives; linear actuator; Rotary drives	
TSO 3d.	Describe block diagrams of the given control system.	3.2	Control systems: Open loop and close loop with applications and its elements, Servo	
TSO 3e.	Specify drive system used for robotic control as per requirement. Differentiate the various robot path controls.		and non-servo control systems – Types, basic principles and block diagram Robot controller; Level of Controller	

M	lajor Theory Session Outcomes (TSOs)		Units	Relevant COs Number (s)
TSO 3g.	Justify the selection of actuators, drives, control system, AC servo motor and path control for making of a robot.	3.3	AC servo motor; DC servo motors and Stepper motors; Robot path control: Point to point, Continuous path control and Sensor based path control	
TSO 4a.	Explain various robot programming languages.	Unit-	- 4.0 Introduction to Robot Programming	CO5
TSO 4b.	Programme robot for a given simple job.	4.1	Need and functions of programming	
	Describe the procedure to simulate the given robot movements using the relevant software.	4.2 4.3 4.4 4.5	Methods of robot programming: Manual Teaching, Teach Pendant, Lead through, Programming languages. Programming with graphics. Programming languages: Types, features and applications Controller programming Simulation for robot movement	
TSO 5a.	Select a robot for the given application.	Unit-	5.0 Robotics Applications and Maintenance	CO1, CO2,
	Describe various applications of Robotics.		aspects	CO3, CO4
	Explain safety norms in robot handling.	5.1	Application robots including special	
TSO 5d.	Describe maintenance procedure for the given		types	
TCO F	robot.	5.2	Robot maintenance: Need and types	
1SO 5e.	Describe common problems in robot operations and suggest remedial action.	5.3	Common troubles and remedies in robot operation. General safety norms, aspects and precautions in robot handling	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400504H

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)
LSO 1.1 Identify parts of Robot on the basis of function. 1.2 Identify joint type & link parameters (link length, link twist, and Link offset), rotational vs. linear motion, used in robot.	1.	Identify components and different configurations of robots.	CO1
LSO 2.1Identify different types of robot end effecters. LSO 2.2 Use Mechanical grippers to hold objects. LSO 2.3 Use Vacuum grippers to hold objects.	2.	Pick/hold different objects (shape/weight/stiffness) using robot end effecters.	CO1, CO2
LSOs 3.1 Assemble the complete robot using the components as per the procedure LSO 3.2 Apply the functionalities available in rotor trainer kit. LSO 3.3 Test for various configurations. LSO 3.4 Test for various degrees of freedom.	3.	Assemble robot to test various configurations and degrees of freedom using robot trainer kit.	CO1, CO2
LSO 4.1 Identify various types of sensors used in robotic application. LSO 4.2 Measure angular motion using Synchros. LSO 4.3 Detect objects using optical sensors.	4.	Use different types of robotic sensors for a specific situation.	CO3
LSO 5.1 Interface stepper motor. LSO 5.2 Control robot with stepper motor interfacing.	5.	Perform robot control with stepper motor interfacing	CO3

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number (s)
LSO 6.1 Draw the labelled sketch of individual parts and robot arm. LSO 6.2 Assemble the arm using the parts as per the procedure. LSO 6.3 Interface the motor drive and operate.	6.	Assemble robot arms using mechanical transmission components and interface motor drive.	CO2, CO3
LSO 7.1 Use open source or available relevant software to develop pick and place programme. LSO 7.2 Perform simulation.	7.	Perform pick and place operation using Simulation Control Software.	CO5
LSO 8.1 Develop programme for using a robot arm with three degrees of freedom. LSO 8.2 Execute the programme.	8.	Perform 2D simulation of a 3 DOF robot arm.	CO2, CO4, CO5
LSO 9.1 Apply stepper motor control with direction control and step control logic simulation. LSO 9.2 Perform basic PLC programming LSO 9.3 Develop ladder logic programs LSO 9.4 Use programming timers	9.	Programme 5-axis Robotic arm to control various motions.	CO3, CO4, CO5
LSO 10.1Develop a program for a simple application. LSO 10.2 Execute the robot programme.	10.	Program to execute a simple robot application (like painting, straight welding) using a given configuration.	CO4, CO5

- L) Suggested Term Work and Self Learning: S2400504H Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - **b. Micro Projects:** A suggestive list of micro-projects is given here. Similar micro-projects that match the COs could be added by the concerned course teacher. The student should strive to identify eco-friendly or recycled material prior to selection for robotic applications.
 - 1. Develop stair climb robot using robotic components.
 - 2. Develop RF controller robot using robotic components.
 - 3. Develop robot for metal detection application using robotic components.
 - 4. Develop line follower robot using robotic components.
 - 5. Develop solar floor cleaner robot using robotic components.
 - 6. Develop solar tracker system using robotic components.
 - 7. Develop a greenhouse managing robot for a horticulture application.

c. Other Activities:

- 1. Seminar Topics: Recent developments in the field of robotics
- 2. Visits: Visit an automation industry and prepare report for various types of robots employed there and details of any one type of special purpose robot used
- 3. Case Study: Identify a robotic application in automobiles and present a case study
- 4. Self-Learning Topics:
 - History of industrial robot
 - Sociological consequences of Robots

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix									
	Theory Asses	sment (TA)**	Term W	ork Assessr	nent (TWA)	Lab Assessment (LA)#				
COs	Progressive Theory Assessment (PTA) Class/Mid Sem Test End Theory Assessment (ETA) (ETA)		Term	Work & Sel Assessme	· · · · · ·	Progressive Lab Assessment	End Laboratory Assessment			
			Assignments	nts Micro Other Activit Projects		(PLA)	(ELA)			
CO-1	25%	29%	20%	10%	25%	10%	20%			
CO-2	20 %	23%	20%	10%	25%	20%	20%			
CO-3	20%	17%	20%	25%	25%	20%	20%			
CO-4	20%	14%	20%	15%	25%	20%	20%			
CO-5	15%	17%	20%	40%		30%	20%			
Total	30	70	20 20 10		20	30				
Marks				50	•					

Legend:

* : Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

** : Mentioned under point- (N)
: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit N	umber and Title	Total	Relevant	Total	ETA (Marks)			
		Classroom Instruction (CI) Hours	Cos Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0	Basics of Robotics Systems	10	CO1, CO2	20	7	8	5	
Unit– 2.0	Robot Components	12	CO2, CO3	16	3	9	4	
Unit– 3.0	Robotic Drive System and Controller	10	CO3, CO4	12	4	4	4	
Unit– 4.0	Introduction to Robot Programming	8	CO5	10	2	5	3	
Unit– 5.0	Robotics Applications and Maintenance aspects	8	CO1, CO2, CO3, CO4	12	4	4	4	
•	Total Marks	48		70	20	30	20	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant COs	PLA/ELA			
S.	Laboratory Practical Titles	Number	Performance		Viva-	
No.	Laboratory Fractical Titles	(s)	PRA*	PDA**	Voce	
		(5)	(%)	(%)	(%)	
1.	Identify components and different configurations of robots.	CO1	30	60	10	
2.	Pick/hold different objects (shape/weight/stiffness) using robot end effecters.	CO1, CO2	60	30	10	
3.	Assemble robot to test various configurations and degrees of freedom using robot trainer kit.	CO1, CO2	70	20	10	
4.	Use different types of robotic sensors for a specific situation.	CO3	60	30	10	
5.	Perform robot control with stepper motor interfacing	CO3	70	20	10	
6.	Assemble robot arms using mechanical transmission components and interface motor drive.	CO2, CO3	60	30	10	
7.	Perform pick and place operation using Simulation Control Software.	CO5	70	20	10	
8.	Perform 2D simulation of a 3 DOF robot arm.	CO2, CO4, CO5	60	30	10	
9.	Programme 5-axis Robotic arm to control various motions.	CO3, CO4, CO5	60	30	10	
10.	Program to execute a simple robot application (like painting, straight welding) using a given configuration.	CO4, CO5	60	30	10	

Legend :

PRA*: Process Assessment
PDA**: Product Assessment

Note:

This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/ Practical Number
1.	Programmable Robot trainer kit	Trainer kit with - Minimum 3 linkages, Minimum 4 degree of freedom, Mechanical end effecter with servo control, interfacing card (RC servo output, sensors input)	1,2,3
2.	Robotic Arm Control Trainer Kit	Robotic Arm with five axis control application through PLC.; PLC; Digital Inputs: 8 Nos with 4mm banana sockets for getting the external inputs; Digital Outputs: 6 Nos with 4mm banana sockets for applying the inputs; Digital Input Controls: On board Toggle switches, Push Buttons & input potentiometers; Digital Outputs Controls: 6 nos.	8,9

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/ Practical Number
		on board LED indicators; PC interfacing facility through RS-232.	
3.	Proximity trainer kit	Indicator Type:LED; PCB Type Glass Epoxy SMOBC PCB; Interconnections: 2mm banana Patch cords; On board DC motor to see the application of Proximity sensor. Test points to analyse the signal On board variable supply to vary the speed of DC motor. ON/OFF switch and LED for power indication. All interconnections to be made using 2mm banana Patch cords. User manual and patch cords. Built-in power supply. Robust enclosure wooden/plastic box.	4
4.	Robot - Line Tracking Mouse Kit	Product Dimensions (20.3 x 11.4 x 8.9 cm); programmed IC, 2 unassembled gear motors, printed circuit boards, mouse-shaped plastic body, necessary components and wires, step-down power converter	3, 4,5
5.	Intelligent Robot Actuator Module	Integrity Serial Bus System, CAN to Build Intelligent Device Network, Open Hardware Platform, Arduino, to control Robot sub-Systems of motor-sensor, movable Omni Wheel of Omni-Directional, Actuator operation control by DC Encoder Motor, DC-Motor control and operation by Accelerometer, Gyro, Ultrasonic and PSD sensor, Androx Studio; brushless ILM 70×10 Robo Drive DC motor; sensor-actuator units of ARMAR-4; SD-25-160-2A-GR-BB Harmonic Drive reduction gear unit high gear ratio of 160: 1; structural parts (white) are made out of high-strength aluminium, Hollow shaft with strain gauges for torque sensing, motor's magnetic incremental encoder (AMS5306), digital buses (SPI or 12C); Motor interface PCB includes a 13-Bit temperature-to-digital converter with a temperature range from -40°C to 125°C (Analog Devices ADT7302)	3, 4, 5
6.	6-axis Robotics Trainer	Programmable robotic arm with an interactive front panel. Software to demonstrates functioning of the trainer as well as allows a user to develop their own programs. NV330; 8 bit microcontroller to ARM processors; Record and Play capability; Optional interfacing with PLC; Touch operated ON/OFF switch; Auto set to home position; Applications can be developed; Data acquisition using USB	3, 4, 5
7.	Robotic Drive System	AC servo motor; DC servo motors, Stepper motors; DC tachometers, etc.	1,3,5,6,7,10
8.	Robot simulator for Robotics	Educational networking licensed Robotic system with simulation software	8, 10
9.	Assorted sensors	Optical encoders, Acoustic sensors ,IR, Potentiometer, RTD, Thermistor, strain gauge, piezoelectric, etc	4
10.	Vision equipment	Camera, Imaging Components: Point, Line, Planar and Volume Sensors	1, 4,10

R) **Suggested Learning Resources:**

Books: (a)

S. No.	Titles	Author (s)	Publisher and Edition with ISBN		
1.	Introduction to Robotics Mechanics and Control	John Craig	Pearson Education; 978-9356062191		
2.	Industrial Robotics -Technology, Programming and Applications	Nicholas Odrey Mitchell Weiss, Mikell Groover Roger Nagel, Ashish Dutta	McGraw Hill Education; 2nd Edition; 978 -1259006210		
3.	Robotic engineering: an integrated approach	Richard D. Klafter, Thomas A. Thomas A. Chmielewski, Michael Negin	Prentice Hall of India, N.Delhi , 978-8120308428		
4.	Industrial Robotics Technology, Programming and Applications	Mikell P. Groover, Mitchell Weiss, Roger N. Nagel, Nicholas G. Odrey	McGraw-Hill Education, Second Edition, 978-1259006210		
5.	Robotics	Appuu Kuttan K. K.	Dreamtech Press, First Edition, 2020, 978-9389583281		
6.	Introduction to Robotics: Analysis, Control, Applications	Saeed B. Niku	Wiley; Second Edition, 978-8126533121		
7.	Essentials of Robotics Process Automation	S. Muhkerjee	Khanna Publication, First edition, 978-9386173751		
8.	Robotics	R R Ghorpade, M M Bhoomkar	Nirali Prakashan 978-9388897020		

(b) **Online Educational Resources:**

- 1. https://archive.nptel.ac.in/courses/112/105/112105249/
- 2. https://openlearning.mit.edu/mit-faculty/residential-digital-innovations/task-centered-learning-introeecs-robotics
- 3. http://www.mtabindia.com/
- 4. http://www.robotics.org/
- 5. https://en.wikipedia.org/wiki/Industrial_robot
- 6. http://www.servodatabase.com
- 7. https://www.youtube.com/watch?v=fH4VwTgfyrQ
- 8. https://www.youtube.com/watch?v=aW BM S0z4k
- 9. https://uk.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/robotic-parts-guide
- 10. https://www.automate.org/industry-insights/smarter-robot-grasping-with-sensors-software-thecloud

Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational

11. https://www.iqsdirectory.com/articles/machine-vision-system.html

(c)

Others:

Note:

Learning Packages 1.

recourses before use by the students.

- https://www.edx.org/learn/robotics
- https://www.coursera.org/courses?query=robotics
- https://www.udemy.com/topic/robotics/
- https://library.e.abb.com/public/9a0dacfdec8aa03dc12578ca003bfd2a/Learn%20with%20ABB.%20Rob otic%20package%20for%20education.pdf

2. **Users' Guide**

- https://roboindia.com/store/DIY-do-it-your-self-educational-kits-robotics-embedded-systemelectronics
- https://www.robomart.com/diy-robotic-kits

• https://www.scientechworld.com/robotics

3. Lab Manuals

- http://www-cvr.ai.uiuc.edu/Teaching/ece470/docs/ROS_LabManual.pdf
- https://www.jnec.org/labmanuals/mech/be/sem1/Final%20Year%20B.Tech-ROBOTICS%20LAB%20%20MANUAL.pdf

A) Course Code : 2400505(P2400505/S2400505)

B) Course Title : Entrepreneurship Development & Start-ups (Common for all Programmes)

Semester- V

C) Pre-requisite Course(s) :
D) Rationale :

A fast-growing economy provides ample opportunities for diploma engineers to succeed in entrepreneurship and start-ups. Start-up ecosystem and Entrepreneurship Development skills are fully developed providing many opportunities to the youths. Diploma engineers can be their own masters and provide jobs to others by starting their service-industry / assembly/marketing/consultancy/manufacturing enterprises. Entrepreneurship requires a distinct set of skills that will be developed in this course. This course aims at developing competencies in the diploma engineer for becoming an intrapreneur, a successful entrepreneur, or a startup Co-Founder. After successfully completing this course students who develop the qualities of a successful entrepreneur can establish their own manufacturing industry/business startup or be self-employed. Those who prefer jobs can become intrapreneurs and share profits with their company.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of the following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor, and Affective) in the classroom/laboratory/workshop/field/industry.

After completion of the course, the students will be able to-

- **CO-1** Demonstrate traits of a successful intrapreneur/ entrepreneur/ start-up co-founder.
- **CO-2** Innovate products and services using creativity and innovation techniques.
- **CO-3** Manage critical resources from support institutions.
- **CO-4** Prepare sustainable small business plans.

F) Suggested Course Articulation Matrix (CAM):

Course		Outco	ne Specific omes* Os)								
Outcomes	PO-1	PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7									
(COs)	Basic and	Problem	Design/	Engineering	Engineering	Project	Life Long				
	Discipline	Analysis	Development	Tools	Practices for Society,	Management	Learning				
	Specific		of Solutions		Sustainability and						
	Knowledge				Environment						
CO-1	3	-	-	1	2	3	2				
CO-2	3	2	3	-	2	3	2				
CO-3	3	3	3	-	2	3	2				
CO-4	3	3	-	-	2	3	2	_			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

		Scheme of Study (Hours/Week)					
Course Code	Course Course Title		room uction CI)	Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)
		L	Т				
2400505	Entrepreneur ship Development & Startups	_	-	04	02	06	03

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = $(1 \times Cl \text{ hours}) + (0.5 \times Ll \text{ hours}) + (0.5 \times Notional hours)$

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

		Assessment Scheme (Marks)						
		Theory Assessment (TA)		Term Work & Self-Learning		Lab Assessment (LA)		A+LA)
	Course Title		Assessme (TWA)					(TA+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (T/
2400505	Entrepreneurship Development & Startups	-	-	20	30	20	30	100

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as
 externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and selflearning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these
 activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment
 may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist &
 rubrics for these activities.

- Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.
- J) Theory Session Outcomes (TSOs) and Units: (Not Applicable)
- K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400505

Practical	/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment / Practical Titles	Relevant Cos Number(s)
LSO1.1	Identify the skills of a Successful Entrepreneur.	1.	Profile summary (about 500 words) of a successful entrepreneur indicating milestone achievements.	CO1
LSO1.2	Determine the charms of entrepreneurship and start-ups	2.	Discussion session with your institute's pass-out students who are successful entrepreneurs.	CO1
LSO1.3	Perform strength, weakness, opportunity, and threat analysis.	3.	SWOT analysis to arrive at your business idea of a product/service.	CO1
LSO1.4	Develop sales & marketing skills	4.	Sale of products to different customers	CO1
LSO2.1	Use creativity and put up a stall in a funfair and write a report of profit/loss.	5.	Creativity and Innovation in Business	CO2
LSO2.2	Innovate a point of sale for a product.	6.	Exhibition cum sale of products prepared out of waste.	CO2
LSO2.3	Generate different business opportunities.	7.	Business ideas (product/service) for intrapreneurial and entrepreneurial opportunities through brainstorming.	CO2
LSO1.5	Discover entrepreneurial potential.	8.	Self-assessment test to discover entrepreneurial traits.	CO1
LSO2.4	Classify domain-specific industries on business parameters.	9.	Survey industries (your stream), and grade them according to the level of scale of production, investment, turnover, and pollution to prepare a report on it.	CO2
LSO3.1	Identify entrepreneurship support institutions beneficial for the enterprise.	10.	Compile the information from the government agencies that will help you set up your business enterprise.	CO3
LSO3.2	Select a suitable funding scheme for the enterprise.	11.	Visit a bank / financial institution to enquire about various funding schemes for small-scale enterprises.	CO3
LSO3.3	Analyze the assessment procedure of bank loans.	12.	Collect loan application forms of nationalized banks / other financial institutions.	CO3
LSO3.4	Compute the financial needs of the business enterprise	13.	Compile the information from financial agencies that will help you set up your business enterprise.	CO3
LSO2.5	Select a business opportunity.	14.	Identify the business opportunity suitable for you.	CO2
LSO3.5	Carry-out market survey for a product.	15.	Market Survey for an Enterprise	CO3
LSO4.1	Find out rates of industrial lands and buildings in different industrial areas.	16.	Industrial land and building for Entrepreneurship.	CO4

Practical	/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment / Practical Titles	Relevant Cos Number(s)
LSO4.2	Craft a vision statement and enabling mission statements for your chosen enterprise.	17.	Vision statement and mission statement for a Startup.	CO4
LSO4.3	Select a suitable name and brand for the business enterprise.	18.	Branding for a product and a Company.	CO4
LSO4.4	Design a logo, letterhead, and visiting card for the business.	19.	Marketing communication for business.	CO4
LSO4.5	Prepare a techno-feasibility report	20.	A techno-feasibility report of a chosen product/service.	CO4
LSO4.6	Prepare a business plan for the enterprise.	21.	Business plan for the enterprise.	CO4
LSO4.7	Develop a website for the business	22.	Online Marketing for Business.	CO4
LSO3.6	Prepare a set of short-term, medium, and long-term goals for starting a chosen small-scale enterprise.	23.	Goal setting for an enterprise.	CO3
LSO3.7	Prepare an advertising campaign for your chosen product/service.	24.	Marketing management for an enterprise.	CO3
LSO3.8	Establish a supply chain network for the enterprise.	25.	Supply Chain Management	CO3
LSO3.9	Establish a Market intelligence mechanism.	26.	Market Intelligence for Entrepreneurship	CO3
LSO4.8	Compile information about various insurance schemes covering different risk factors.	27.	Risks in business	CO4
LSO4.9	Calculate the breakeven point for the business idea chosen by you.	28.	Breakeven point for a business	CO4

- **L)** Suggested Term Work and Self-Learning: S2400505 Some sample suggested assignments, micro-projects, and other activities are mentioned here for reference.
 - a. **Assignments**: Questions/ Problems/ Numerical/ Exercises to be provided by the course teacher inline with the targeted COs.
 - i. Prepare a list of successful Entrepreneurs in the city.
 - ii. Prepare a list of startups in the city.
 - iii. Prepare a list of the nearest incubators.
 - iv. Prepare a list of Angel Investors and Venture Capitalists.
 - v. Choose any product and study its supply chain.
 - vi. Arrange brainstorming sessions for improvement of any product.
 - vii. Choose any advertisement and analyse its good and bad points.
 - viii. Visit industrial exhibitions, trade fairs and observe nitty-gritty of business.
 - ix. Study schemes for entrepreneurship promotion of any bank.

b. Micro Projects:

- i. Interview successful entrepreneurs and startup co-founders in the city and innovate their products/services, pricing, packaging, advertisements, propositions, etc.
- ii. Identify different entrepreneurship support institutions in the city.
- iii. Prepare a collage for specific entrepreneurship development institutions.
- iv. Conduct a market survey for a specific product idea.

c. Other Activities:

1. Seminar Topics:

- Charms of entrepreneurship.
- Challenges of entrepreneurship.
- Startup ecosystem in India.
- One district one product scheme
- Setting up of a business.
- Market study of specified business.
- Prepare a business plan for your chosen small scale enterprise.

Semester- V

- Business opportunity suitable for you.
- Visits: Visit DIC, MSME, NSIC, NABARD, KVIC, IDBI, SBI, State Consultancy Organization,
 Industrial Development Center, Trade Exhibitions, Export Fairs, Trade Shows, etc.
 Visit nearby tool room/industry and learn to prepare budget of that industry. Also learn to grow low scale business and marketing. Prepare list of advertisement to grow business.

3. Self-Learning Topics:

- · Achievement Motivation.
- Need for achievement.
- Calculated risk.
- CSR (Corporate Social Responsibility)
- MSME Development Institute.
- Marketing their business.
- Growing their business.
- Financial management.
- Dealing with the pressure and stress
- **M)**Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	ourse Evalua	ation Matrix			
	Theory Asses	sment (TA)**	Term W	ork Assessn	nent (TWA)	Lab Assessment (LA)#		
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Work & Self Learning Assessment		Progressive Lab Assessment	End Laboratory Assessment		
	Class/Mid		Assignments	Micro	Other Activities*	(PLA)	(ELA)	
	Sem Test			Projects				
CO-1	30%	30%	30%	-	-	30%	30%	
CO-2	10%	10%	10%	33%	-	10%	10%	
CO-3	30%	30%	30%	33%	50%	30%	30%	
CO-4	30%	30%	30%	34%	50%	30%	30%	
Total	30	70	20	20	10	20	30	
Marks				50	1			

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)
#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: (NOT APPLICABLE)

O) Suggested Assessment Table for Laboratory (Practical):

		Relevant Cos	ı	PLA/ELA	A	
S.	Laboratory Practical Titles	Number	Perfori	mance	Viva-	
o. No.	Laboratory Fractical Titles	(s)	PRA*	PDA**	Voce	
NO.			(%)	(%)	(%)	
	Profile summary (about 500 words) of a successful entrepreneur indicating milestone achievements.	CO1	50	40	10	
	Discussion session with your institute's pass-out students who are successful entrepreneurs.	CO1	50	40	10	
3.	SWOT analysis to arrive at your business idea of a product/service.	CO1	50	40	10	
4.	Sale of products to different customers	CO1	50	40	10	
5.	Creativity and Innovation in Business	CO2	50	40	10	
6.	Exhibition cum sale of products prepared out of waste.	CO2	50	40	10	
	Business ideas (product/service) for intrapreneurial and entrepreneurial opportunities through brainstorming.	CO2	50	40	10	
8.	Self–assessment test to discover entrepreneurial traits.	CO1	50	40	10	
	Survey industries (your stream), and grade them according to the level of scale of production, investment, turnover, and pollution to prepare a report on it.	CO2	50	40	10	
10.	Compile the information from the government agencies that will help you set up your business enterprise.	CO3	50	40	10	
	Visit a bank / financial institution to enquire about various funding schemes for small-scale enterprises.	CO3	50	40	10	
	Collect loan application forms of nationalized banks / other financial institutions.	CO3	50	40	10	
	Compile the information from financial agencies that will help you set up your business enterprise.	CO3	50	40	10	
14.	Identify the business opportunity suitable for you.	CO2	50	40	10	
15.	Market Survey for an Enterprise	CO3	50	40	10	
16.	Industrial land and building for Entrepreneurship.	CO4	50	40	10	
17.	Vision statement and mission statement for a Startup.	CO4	50	40	10	
18.	Branding for a product and a Company.	CO4	50	40	10	
19.	Marketing communication for business.	CO4	50	40	10	
20.	A techno-feasibility report of a chosen product/service.	CO4	50	40	10	
21.	Business plan for the enterprise.	CO4	50	40	10	

		Relevant Cos	P	LA/ELA	
S.	Laboratory Practical Titles	Number	Perform	nance	Viva-
No.	Laboratory Fractical Titles	(s)	PRA*	PDA**	Voce
140.			(%)	(%)	(%)
22.	Online Marketing for Business.	CO4	50	40	10
23.	Goal setting for an enterprise.	CO3	50	40	10
24.	Marketing management for an enterprise.	CO3	50	40	10
25.	Supply Chain Management	CO3	50	40	10
26.	Market Intelligence for Entrepreneurship	CO3	50	40	10
27.	Risks in business	CO4	50	40	10
28.	Breakeven point for a business	CO4	50	40	10

Legend:

PRA*: Process Assessment PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to beprepared by the course teacher for each experiment/practical to assess the student performance.

- P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.
- Q) List of Major Laboratory Equipment, Tools and Software: (Not Applicable)

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Entrepreneurial Development	Khanka S.S. (2006)	S. Chand Publishing, 20068121918014,
2.	Un-Boxing Entrepreneurship Your self-help guide to setup a successful business	Dr. Nishith Dubey Aditya Vyas, AnnuSoman, AnupamSingh, CharulChaturvedi, Praveen Shukla	Indra Publishing House, 2023, ISBN- 978-93-93577-70-2
3.	Skill Development and Entrepreneurship in India	Rameshwari Pandya	Ingram 2016, 8177084186
4.	Production and Operations Management	SV Deshmukh, A K Chitale and Nishith Rajaram Dubey,	Archers & Elevators Publishing House, Bangalore ISBN 9789386501197
5.	Entrepreneurship Development	Sapna Jarial	New India Publishing Agency- Nipa 2022, 9395319240

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
6.	The Entrepreneurial Instinct: How Everyone Has the Innate Ability to Start a Successful Small Business	Monica Mehta	Tata McGraw Hill Education, New Delhi, 2012, ISBN 978-0-07-179742-9
7.	The Learn Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses	Eric Ries	Penguin UK ISBN-978- 0670921607
8.	Entrepreneurship and Start-ups	Ekta Sharma	FPH
9.	The Innovator's Dilemma: The Revolutionary Book That Will Change the Way You Do Business	Clayton M. Christensen	Harvard business ISBN: 978- 142219602

(b) Online Educational Resources:

- 1. Coir Board http://coirboard.gov.in/
- 2. National Institute for Micro, Small and Medium Enterprises (ni-msme) https://www.nimsme.org/
- 3. MSME / Udyam Registration https://udyamregistration.gov.in/Government-India/Ministry-MSME-registration.htm
- 4. CHAMPIONS https://champions.gov.in/Government-India/Ministry-MSME-Portal-handholding/msme-problem-complaint-welcome.htm
- 5. Prime Minister Employment Generation Programme and Other Credit Support Schemes https://msme.gov.in/prime-minister-employment-generation-programme-and-other-credit-support-schemes
- 6. Marketing Promotion Schemes https://msme.gov.in/marketing-promotion-schemes
- 7. Start-up India https://www.startupindia.gov.in/
- 8. DPIIT Recognition https://www.startupindia.gov.in/content/sih/en/startup-scheme.html
- 9. Startup India Seed Fund Scheme https://seedfund.startupindia.gov.in/
- 10. STARTUP INDIA INVESTOR CONNECT https://investorconnect.startupindia.gov.in/
- 11. Startup Funding https://www.startupindia.gov.in/content/sih/en/funding.html
- 12. Women Entrepreneurship in India https://www.startupindia.gov.in/content/sih/en/women entrepreneurs.html
- 13. Incubators https://www.startupindia.gov.in/content/sih/en/incubator-framework.html
- 14. Start-up Mentors https://www.startupindia.gov.in/content/sih/en/search.html?roles=Mentor&page=0
- 15. NEN https://nen.org/
- 16. TIE https://tie.org/
- 17. MoE Innovation Cell https://www.mic.gov.in/
- 18. https://youtu.be/8iKsZZYv90k
- 19. https://youtu.be/Tzzfd6168jk
- 20. https://youtu.be/9-O15gDqebg

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others: -

A) Course Code :2420506(P2420506/S2420506)

B) Course Title : Summer Internship -II / Industrial training

C) Pre- requisite Course(s)
D) Rationale

With the advancement in technology and skill requirements of industry 4.0, we need to prepare our young Indian technical talent to meet the present demand. Our diploma pass outs are either supposed to work as supervisor in the industries or start their own enterprise, hence upon the completion of diploma programme, they need to be adequately equipped with knowledge, skills and attitude required by the world of work in their relevant field. To attain this, students need to be sent for internship, industrial visit and industrial training during the course of study. One or two mandatory internships are placed in the programme structure to equip the students with practical knowledge, problem solving attitude and also provide the exposure to real time industrial environments. It also helps the students to understand the industrial requirements, develop expertise through hands on experience and take up project work relevant to industry. With these provisions of industrial exposures relevant practical and professional skills are developed in the students and as a result they are readily employed and widely accepted by industries, even sometimes during such trainings itself. In the context of above after having gone through the summer internship-I (after the second semester), the summer internship-II/ industrial training is planned after the completion of fourth semester.

Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Develop the comprehensive view of industry 4.0 elements and 21st century skills requirements in the relevant diploma engineering programme through Summer Internship-II.
- **CO-2** Outline the importance of industrial training and Internship for gaining direct practical skills on their relevant domain area of industrial equipment, automation, machinery, processes, product, management, operations, software development etc.
- **CO-3** Use the knowledge and skills gained during industrial training or world of work.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Outcomes(POs)									
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning		PSO-2		
CO-1	2	-	-	3	-	2	1				
CO-2	-	-	-	3	-	2	1				
CO-3	3	2	2	3	-	2	1				

Legend: High (3), Medium (2), Low (1) and No mapping (-)

^{*} PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)							
Course Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	T						
2420506	Summer Internship - II	-	1	02	04	06	03		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

		Assessment Scheme (Marks)							
		Theory Assessment (TA)		Self-Le Asses	Work & earning sment VA)	Lab Assessment (LA)		(TA+TWA+LA)	
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+	
2420506	Summer Internship - II	-	-	20	30	20	30	100	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Guidelines to Teachers for Implementation & Assessment of Industrial Visit:

1. Rationale:

During implementation of the curriculum, industrial exposure in the form of industrial internship/training is very important for developing and reinforcing many concepts and principles and also to get exposure of industrial environment, working culture, latest developments in relevant field, layout, management, culture, hierarchy, discipline, safety norms, different department/sections, quality control/assurance in processes, services and products, demonstration and operation of specific equipment/machinery, rules and procedures and many other aspects of the industries, where diploma holders are going to work. Students also get exposed to the different kinds of problems which can be brought into the institutional laboratories or workshop. Organizing industrial training of students is essentially required to enhance the prospects of employability, after undergoing industrial training, students get the direct exposure to the world of work in their relevant field. They get hands on experience in the industries.

Planning before Industrial internship/training is essentially required to be done for effective implementation of the same.

2. Planning for industrial internship/training:

Following points need to be planned and briefed by the teachers to the students before proceeding for industrial training. Student should take into consideration these points and carry the relevant format/data/log book with them.

- Analyze curriculum analysis and identify curricular gaps and topics which need industrial intervention;
- Objectives / Purposes of the industrial internship/training
- Outcomes targeted before proceeding to industrial internship/training.
- Pre-requisite knowledge or skills required to be developed in the students in the form of demonstration or classroom sessions.
- Identification and planning for demonstration of any equipment or experiments, concepts, under the content beyond syllabus.
- Preparation of database of nearby relevant industries.
- Good rapport needs to be developed and maintained with the industries by the teachers, so that the students are ultimately benefitted by the industrial internship/training.
- Industrial policy of the state also needs to be taken care of while planning of industrial training
- For assessing the students on various dimensions of industrial internship/training, assessment rubric may be prepared by the implementing teachers in advance.
- Make arrangements for student insurance during the industry internship/training
- Prepare instructions to be followed by students in the industries.
- Following formats need to be developed by the teachers and briefed to the students before proceeding to industrial internship/training –
 - Formats of observations on layout, ambience, and work culture to be developed, and briefed to the students.
 - Formats of outcome attainment, related to observation on relevant technical area also need to be developed by the teachers and briefed to the students.
 - Formats and contents of report writing and presentation.
 - Formats and contents on assessment of industrial training.
 - Continuous observation formats on many points such as behavioral aspects related to soft skills development such as initiativeness, observation, notes taking skills, inquisitiveness, obedience, sincerity, follow the instructions, positive attitude and many other aspects.

Formats of Assessment Rubric on different parameters of both behavioral aspects and technical aspects of the programme.

3. Major outcomes expected to be attained and assessed:

Outcomes expected from the industrial internship/training should be clearly defined and briefed to the students. Evaluation criteria for assessing students, need to be prepared for different outcomes set, during the planning stage. The list of major outcomes expected to be attained are –

- Development and reinforcement of Basic knowledge
- Development and reinforcement of Engineering knowledge through reinforcement of concepts or principles.
- Gaining Engineering Knowledge i.e operations, performance, maintenance, demonstrations of specific skills relevant to the content of the programme.
- Experiment and practice Development of experimental practical skills and technical skills relevant to the course programme.
- Development of learning to learn skills and lifelong teaching skills for latest advancement in technology.
- Outcome attainment through content beyond syllabus
- Development of positive attitude, professional ethics and etiquettes.
- Development of skills for individual and team work during performance and otherwise.
- Maintaining Business Secrecy
- Development of Communication Skills
- · Ability to follow the instructions
- Ability to follow the safety precautions
- Ability to supervise the task
- Ability to coordinate with subordinates and higher ups
- Development of Interpersonal skills
- Environmental Consciousness and Sustainability
- Development of Observational Skills
- Development of Self-discipline and Integrity
- Development of Time Management habits
- Development of generic skills such as pro-activeness, commitment
- Development of Problem-Solving abilities
- Achievement of target
- Concern for Environment, Sustainability Society
- Communication ability
- Industrial System and its development
- Safety Awareness
- Systematic Operations and Productions
- Quality control
- Management of work place and work force
- Development of positive attitude
- Work culture/Quality Culture
- Development of Professional Ethics
- Industrial Management
- Systematic planning, Implementation & Evaluation
- Use of engineering tools, techniques, software's and Procedures
- Development of Lifelong learning skills

It is important to note that outcomes attained during industrial visit are at the awareness level only.

4. Actions to be taken by the Students and Teachers:

Students are sent to Industrial training after briefing on various aspects. During industrial training, observational skills in students are required to a great extent -

- Students need to be alert, meticulous and record the data, as briefed to them before the industrial training.
- Record of observations on safety precaution to be followed, any special point during performance and handling of equipment, performance on technical aspects and other related aspects need to be taken care of.
- Continuous observation, monitoring and assessment on various behavioral and performance of technical aspects of each student need to be critically observed and recorded by the teachers using different assessment tools.

5. Post Training Assessment:

The students need to be assessed on report writing, presentation and interpretation of data recorded, on various dimensions, planned and performed, after the industrial training. The actions are required to be taken for assessment during report writing, analysis, interpretation, presentation of data and its assessment.

J) Initiatives by Govt. of India and other Agencies for Industrial Internship/ Training/Visit for Skills Development:

1. Initiatives by Govt. of India, GOI

a. Initiatives by Ministry of Skills Development and Entrepreneurship: Many efforts are initiated by different agencies in this direction as per our Prime Minister's Skills Development Mission. Make in India, Skills India etc are such initiatives taken by ministry for the benefit of the students. The Ministry is responsible for coordination of all Skill Development efforts across the country, removal of disconnect between demand and supply of skilled manpower, building the vocational and technical training framework, skill up-gradation, building of new skills and innovative thinking not only for existing jobs but also jobs that are to be created. The Ministry aims to skill on a large scale with speed and high standards in order to achieve its vision of a 'Skilled India'.

b. Initiatives by Ministry of Education, Govt. of India

- i. Ministry of Education, Government of India is providing students a platform to inculcate a culture of product innovation and a mindset of problem solving to solve some of pressing problems solving to solve some of pressing problems we face in our daily lives through Smart India Hackathon (SIH) 2019.
 SIH 2023 brings the next generation evolution by inclusion of new methodology to inculcate the culture of startup and innovation ecosystem across different age groups i.e. are as follows: -
 - SIH Junior (Jr) School students from 6th to 12th class will be able to showcase their talent and generate out-of-the-box open innovation ideas.
 - SIH Senior (Sr) Regular Students of HEI's pursuing "Graduate/Post-Graduate/Ph.D." will be able to showcase their talent and generate out-of-the-box open innovation ideas
- ii. Internshala: Internshala is India's largest internship and training platform where more than 80,000 companies look for interns in various profiles (Engineering, management, media, arts etc.) AICTE has also partnered with Internshala for providing internship opportunities to every student in AICTE approved colleges. This facility is created to provide a platform for hands on experience to our future technicians on the relevant industries. With this experience, they are updated with the latest advances in their field of work.

Government of India through, AICTE is engaged in promoting the concept of industrial training through its various scheme, such as Internshala. The teachers now have the responsibility to understand in depth and

implement such schemes in the institution for the benefit of students. At institute level also, there is need to develop policy for sending the students for industrial training.

c. Initiatives by All India Council for Technical Education (AICTE)

All India Council for Technical Education (AICTE) has been actively promoting various schemes to enhance internship, industrial training, and industrial visit opportunities for students pursuing technical education. These schemes aim to provide practical exposure, industry-relevant skills, and hands-on experience to students enrolled in AICTE-approved institutions. Since the schemes are reviewed continuously, the latest update can be referred through AICTE website.

- i. AICTE Training and Learning (ATAL) Academy: The ATAL Academy provides opportunities for faculty and students to participate in various skill development programs, including internships and industrial training, to enhance their technical knowledge and expertise.
- **ii. AICTE Doctoral Fellowship Scheme**: This scheme offers financial support to full-time Ph.D. scholars to undertake internships, research visits, or collaborative work with industry and research organizations in India and abroad.
- iii. Margdarshan Scheme: The Margdarshan Scheme encourages faculty members to interact with industries and update their technical knowledge, which, in turn, benefits the students through better industry exposure and guidance. The National Education Policy (NEP) 2020 has also stressed on accreditation and it forms one of the four pillars for benchmarking and ensuring quality. The creation of National Accreditation Council as envisaged under NEP is thus only a matter of time after the suitable legislation is enacted. As per the NEP, accreditation shall be the sole driver for all future educational restructuring and changes. Hence it has become much more essential for an institute to strive and obtain accreditation for their programmes. This Margdarshan Initiative was last revised in May 2022. While the scheme has progressed, a need was felt to undertake a review and amplify the guidelines based on the feedback from the environment and other developments.
- iv. AICTE Training and Learning (ATAL) FDP Internship: Under this scheme, faculty members have the opportunity to undergo internships at reputed industries to gain practical insights and update their teaching methodologies.
- v. AICTE Internship Policy: AICTE has laid down an Internship Policy to encourage students to undertake internships as part of their academic curriculum. This policy aims to enhance their employability and bridge the gap between industry and academia.
- vi. AICTE-MODROBS (Modernization and Removal of Obsolescence) Scheme: The MODROBS scheme supports the modernization of laboratories and workshops in technical institutions to enhance students' hands-on training experience. The scheme aims to modernize and remove obsolescence in the Laboratories / Workshops / Computing facilities (Libraries are excluded), so as to enhance the functional efficiency of Technical Institutions for Teaching, Training and Research purposes. It also supports new innovations in Class Room and Laboratory / Teaching Technology, development of Lab Instructional Material and appropriate Technology to ensure that the practical work and project work to be carried out by students is contemporary and suited to the needs of the Industry.
- **vii. AICTE Vocational Education Programs**: AICTE supports vocational education programs that incorporate practical training, internships, and apprenticeships to make students industry-ready.
- **viii. Industrial Visits and Training by Institutions**: While not a specific AICTE scheme, AICTE-approved institutions often organize industrial visits and training programs as part of their curriculum to provide practical exposure to students.
- d. Initiatives by Ministry of Labour and Employment, Govt. of India

Ministry of Labour and Employment, Government of India launched a National ICT based job portal known as National Career Service (NCS) portal to connect the opportunities with the aspirations of youth. This portal facilitates registration of job seekers, job providers, and skill providers. Career counsellors, etc. The portal provides job matching services in a highly transparent and user-friendly manner. These facilities along with career counselling content are delivered by the portal through multiple channels like career centres, mobile devices, CSCs, etc.

The portal provides information on over 3000 career options from 53 key industry sectors. Job seekers also have access to industry trends in a user-friendly way. The NCS portal links job-seekers, employers, counsellors and training providers all through Aadhaar-based authentication. Registration to NCS portal is online and free of charge. The salient feature of NCS portal includes the following:

- Career counselling and Guidance
- Enabling Skill Development
- Empowering Job Seekers to find the right job
- Enabling employers to pick the right talent
- Enhancing capabilities of students through training Information's related to Job Fairs/Placements

Employment Exchanges Mission Mode Project (EE - MMP)

The Employment Exchange Mission Mode project is one of the 31 Mission Mode Projects under National e-Governance Plan (Ne-GP). Budget of INR 148.70 crore has been approved for 12th Five Year Plan for this project in December, 2013. The aim of EE-MMP is to provide career options and facilitate informed choice to the job seekers by providing a national platform for interface between stakeholders for responsive, transparent and efficient career services in order to meet the skill needs of a dynamic economy. The objective of EE-MMP is to take up process

Re-engineering and convert NES (National Employment Service) into NCS (National Career Service).

National Career Service (NCS)

NCS is proposed to have variety of services like information about skill development courses, apprenticeship, internship, career counseling, etc. along with all employment related services. It is expected that the NCS would be accessible to all stakeholders, based on partnerships and would provide larger number of services supported by call centers/helpdesk and through network of new nodes like CSC (common service centers), etc.

The main stakeholders for the NCS would include:

- Unemployed candidates seeking jobs
- Students seeking career counseling
- Candidates seeking vocational / occupational guidance
- Illiterate, under-privileged sections of society, blue-collar workers seeking placements and guidance
- Person with different abilities (PWDs), ex-servicemen, veterans / senior citizens, etc.
- Employers seeking suitable candidates

e. Initiatives by Telecom Sector Skill Council (TSSC)

TSSC has taken a step towards fulfilling the emerging requirements of the industry by partnering with key stakeholders in order to bring the latest content to the forefront. TSSC have got into partnership with All India Council for Technical Education (AICTE) for summer internship programme and various other MNCs to impart Skilling in new emerging technologies. Some of the prime courses in new emerging technologies being offered by TSSC in addition to TSSC Qualification packs are as under:

Artificial Intelligence & Data Science

- Cyber Security
- Internet of Things
- Android
- AR/VR

In addition to this certain course on life skills/soft skills, employability related skills are also planned for the students such as

- Problem solving and analytic
- Communication skills
- Lifelong learning
- Behavioural Skills
- Professional Behavioural etc.

The main objectives of TSSC are as follows

- Bridge the gap and enhance employability of our students
- Training young minds towards 21st Century skills assisting industry cross-sector
- Meet the needs of school leavers and graduates, employers, government educational institutions and society.
- Address the need for quality, skill training for human resources to complement the large goal of accomplishing the include growth.
- Address the limited capacity of skills development facilities in India
- To develop extensive placement linkages with employers in all sectors to provide gainful entry-level employment opportunities to youth undergoing the skill training.
- Industry participation in developing the skill training solutions to address critical skill gaps by standardization of training content, delivery and assessment process o improve overall competitiveness of the industry.
- Set up a comprehensive pan- India Labour Market Information System (LMIS) i.e. preparing a webbased compendium of job roles and skill types to assist in planning for re-skilling, delivery of training and employability.
- Undertake occupational mapping and skill gap analysis i.e. identification of skill development needs based on LMIS and emerging technologies.
- Rationalize and maintain a skill inventory.
- Create a skill development plan in coordination with Electronic and IT sector skill councils.
- Review and identify emerging skill gaps by trend analysis.
- Develop National Occupational Standards (NOS) that feature skill competency standards and qualifications.
- Refine the existing curricula to align it with NOS, obtain approval from an industry led body of experts and facilitate building of delivery capacity.
- Plan and institutionalise an effective system for training of trainers.
- Steer the affiliation and accreditation processes to enable quality assurance in training in par with international standards. Steer the affiliation and accreditation processes to enable quality assurance in training in par with international standards.
- Create an assessment framework to award tamper proof certifications to trainees.
- Promote academies of excellence by nurturing state of vocational training.
- Manage resources efficiently to achieve results and value for money.

2. Initiatives by other agencies

a. Initiatives by Engineering Council of India (ECI)

(ECI has also taken initiatives to organize series of interactive workshops to update and apprise the students about the products and services being offered by respective corporate house. This interaction will definitely bring the institute and industry closer and help in planning for effective implementation of industrial training.

b. Others

Many public sector and private organizations are also contributing to the course of quality improvement in technical education system by way of arranging industrial visit of providing industrial training to the students as a part of their corporate social responsibility and also for the growth of technical education system of the country.

- K) Assessment Rubric for Internship, Industrial Visit & Industrial Training: Assessment Rubric for Internship, Industrial visit and industrial training should be prepared based on the objectives set and type of industries where internship/visit or training has been planned. Specific criteria of performance/assessment before, during and after the internship, industrial visit and industrial training should be identified by the implementing teachers for designing the rubric. For objective, valid and reliable assessment of Industrial Training, Industrial Visit and Internship, different tools of assessment such as a checklist, rating scale, assessment rubric, observation schedule, portfolio assessment, incidental records etc. need to be prepared by teachers. Even the students may be encouraged to adopt self-assessment techniques using the assessment rubrics.
- **CO-PO, PSO Mapping:** Based on the requirement of programme, objectives set and type of internship, industrial visit and industrial training placed at different semesters, CO-PO, PSO mapping need to be done. This mapping will vary at different semesters for same programme. Implementing teachers play very important role in developing the CO-PO, PSO matrix.

M) References:

- AICTE Internship Policy: Guidelines & Procedures (Nelson Mandela Marg, Vasant Kunj, New Delhi-110070)- https://aicte-india.org/sites/default/files/AICTE%20Internship%20Policy.pdf
- AICTE Internship Policy Guidelines & Procedures- https://www.aicteindia.org/sites/default/files/Aicte%20Internship%20Policy-%2002.04.2019.pdf
- AICTE Quality Initiatives In Technical Educationhttps://www.aicteindia.org/sites/default/files/AICTE%20QUALITY%20INITIATIVES%20IN%20TECHNICAL %20EDUCATION.pdf
- AICTE Internship Portal- https://internship.aicte-india.org/
- Industrial Visit- https://www.dsu.edu.in/commerce-management/scms-industrial-visit
- AICTE Idea (Idea Development)- https://idealnet.aicte-india.org/assets/data/scheme_doc.pdf
- AICTE Initiative- https://aicte-india.org/initiatives
- Draft Guidelines for Research Internship with Faculty and Researchers at Higher Education
 Institutions/Research Institutions- https://www.ugc.gov.in/pdfnews/1887287_Rsearch-Internship-Guidelines-120522.pdf

- **AICTE internship 2022: Everything you need to know-** https://ischoolconnect.com/blog/aicte-internship-everything-you-need-to-know/
- Industrial Visits Policy and Analysis- https://www.sggs.ac.in/home/page/Industrial-Visits-Policy-and-Analysis
- **Field Visit and Industrial Visit Policy 2023 (Valid till May 2026)-** https://www.bitsathy.ac.in/wp-content/uploads/Field-Visit-and-Industrial-Visit-Policy.pdf
- Industry Interaction Initiatives- https://sjbit.edu.in/industry-interaction-initiatives-ise/
- Internship Policy: Guidelines and Procedures 2021-22 Onwards- https://scetngp.com/wp-content/uploads/2023/04/Internships-Training.pdf
- Industrial Training Policy (Through Internship)https://vignaniit.edu.in/naac/criteria6/6.2.2%20Attachments/211229_Industrial%20Training%20policy. pdf
- UG Internship/Industrial Training/Project Work Guidelines (w.e.f. Academic Session 2020-21)https://nitkkr.ac.in/wp-content/uploads/2021/09/UG-Internship-Guidelines final-08042021.pdf
- Internship Policy- https://iar.ac.in/wp-content/uploads/2022/02/IAR-Internship-Policy.pdf
- Industry Institute Interaction Policy- http://www.gcekarad.ac.in/Placement/III_Policy_2021_Main.pdf
- Internship Policy August 2021- https://ksrct.ac.in/wp-content/uploads/2022/12/Internship-Policy.pdf
- Summer Internship Programme (Sip) Policy: Guidelines & Procedures- https://www.ipeindia.org/wp-content/uploads/2021/12/SIP-Guidelines-EDITED-21st-MAR-2021-Inline with- AICTE-Internship-Policy-2019-1.pdf
- Internship Policy: Guidelines and Procedures with Effect from Academic Year 2020-2021https://www.kitcoek.in/documents/academics/internship-policy/kit-internship-policy-2020.pdf
- Internship / Industrial Training- https://www.dkte.ac.in/placement/internship
- Ministry of Commerce and Industry (DPIIT Internship Scheme)https://www.myscheme.gov.in/schemes/dpiit-is

A) Course Code : 2420507(P2420507/S2420507)

B) Course Title : Minor Project

C) Pre-requisite Course(s) :

D) Rationale :

Project work plays a very important role in engineering education in developing core technical skills, soft skills and a higher level of cognitive, psychomotor and affective domain skills. It encourages the critical thinking process in the students. Project work is normally done when students have acquired sufficient knowledge, skills and attitude and are able to integrate all these, entirely in a new situation or task to solve the problems of the industries/real world. Project work also develops many soft skills like confidence, communication skills, creative ability, inquisitiveness, learning to learn skills, lifelong learning skills, problem-solving skills, management skills, positive attitude, ethics etc.

In diploma programme of state of Bihar, minor project is being carried out at 5th semester where all aspects of project planning will be deal in detail.

Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Identify a real-world problem in the form of a project to be developed.
- **CO-2** Perform literature survey related to the identified area/problem.
- **CO-3** Identify preliminary resource requirements (Equipment, Tools, Software, Manpower, Services)
- **CO-4** Prepare project synopsis for the identified problem/project title within stipulated time period.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Outcomes (POs)										
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineerin gTools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO- 6 Project Management	PO-7 Life Long Learning		PSO-2			
CO-1	3	2	-	-	-	-	1					
CO-2	3	2	-	-	-	2	1					
CO-3	3	2	-	2	-	2	1					
CO-4	3	-	-	-	-	3	1					

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Ca	Scheme of Study (Hours/Week)							
Course Code	Course Title Classroom Instruction (CI)		uction	Lab Instruction (LI)	Notional Hours	Total Hours	Total Credits (C)		
		L	Т		(TW+ SL)	(CI+LI+TW+SL)			
2420507	Minor Project	-	-	02	02	04	02		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T),
Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

	Course Title	Assessment Scheme (Marks)						
Course Code		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(TA+TWA+LA)
		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
2420507	Minor Project	-	-	10	15	10	15	50

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and

seminars, micro projects, industrial visits, self-learning, any other student activities etc.

rubrics)
TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments,

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective

course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Suggested Implementation Plan of Minor Project:

Suggested implementation plan of minor project along with guidelines to teachers and students are mentioned below. For effective implementation of the project work in totality, different steps are to be carried out at different stages of the comprehensive project work.

- Project Planning. (Minor Project)
- Design, development and execution of the project.
- Quality of report writing and presentation.

In this semester, under the minor project work, the students are guided and monitored to under take Project planning steps as mentioned below. While, the remaining steps of project implementation will be carried out during major project work in next the semester.

(Major Project)

1.0 Guidelines to Students for Implementation of Minor Project.

Students are guided to undergo following steps under the minor project. Teacher are advised to guide the students on each and every step.

- 1.1 Identification of Area/Problem and Project Titles
- 1.2 Literature Survey
- 1.3 Identification of Outcomes of the Project
- 1.4 Identification of the recourses required.
- 1.5 Preparation of Synopsis
- 1.6 Presentation of Synopsis

1.1 Identification of Project Titles and Allocation Methodology:

Though the teachers and students, both are involved in identification of project titles, but the prime responsibility of identification of project titles goes to the respective teachers involved in implementing the course or programme. Teachers are fully aware of course/programme curriculum and they are also aware of related industrial problems hence, they try to explore the possibility of identification of project titles through these problems.

These small industrial problems in the form of project titles may be brought into the laboratories or workshop of institutions of a specific programme, which are equipped with all necessary facilities and resources to carry out the project work. These labs or workshop can function as miniature industry to solve the industrial problems in the form of simulated industrial projects. These projects may be integrated problem of courses or programme.

Criteria for Identification of Project Titles.

The identification of problem statement must be based on the following criteria:

- Environmental Considerations
- Simulated/Automated Industry's/ Improvised Process
- Application or Utility in the World of Work.
- Relevance to the Curriculum
- Mapping of Outcomes of Project with Pos and PSOs (if applicable)

Feasibility of Implementation of the Project

1.2 Literature Survey:

Literature survey on the project title needs to be done through journals, websites, open source technologies available, discussion with the practicing engineers/industry persons and other relevant sources available.

1.3 Outcomes of the Project:

The project guide should ensure that the project outcomes are written properly as clear, specific, measurable and attainable statements. The outcomes formulated will decide the overall scope or course of action, depth and breadth of the project and implementation plan.

1.4 Identification of the recourses required:

Students under the guidance of teacher should try to identify all the resources required for the completion of the project like equipment, devices, experimental test rig, software, computer, persons to be contacted, suppliers, funds, availability of internal/external lab. The sample size has to be delimited and decided as per the time limit allotted, feasibility and many other considerations.

1.5 Preparation of Synopsis:

The students at the end of the semester are expected to submit 'Project Synopsis' after interaction with guide, as per the guidelines and format provided.

1.6 Presentation of Synopsis:

After developing the synopsis, student(s) should prepare a Power Point Presentation and present the same in front of examiner, guide and audience. Quality of presentation of data need to be ensured using the following criteria through Rubric-

- Clarity in Communication and Presentation
- Voice Audibility
- Use of Media and Methods
- Satisfying the Queries of Audience
- Attainment of Outcomes

2.0 Guidelines to Teachers for Implementation of the Minor Project:

The teacher alongwith the students should identify the different types of project title(s) as per need of the client as mentioned below:

- Prototype Development
- Experimentation Type
- Software Development Type
- Solving Industrial Problem Type
- Market Survey Type
- Feasibility Study Type
- Simulation Based
- Application Type
- Product Type

- Research Type
- Review Type

The project must be feasible. The guide allocated for each project are responsible for the quality of student's work, on different criteria including the synopsis writing which can be monitored on continual basis.

The guide must ensure that the feasibility of the project, the availability of resources/ software technology, sufficiency of time, finance and requirements during each and every step or activity of project work in advance.

J) Assessment of the Minor Project:

Continual Monitoring and feedback mechanism should be developed by the guide. An assessment plan on weekly progress/updates, action taken on different criteria and sub-criteria of the project work is suggested below. Path-breaking teachers who think out of the box are required to guide, monitor and evaluate the project work.

For objective, valid and reliable assessment, different tools of assessment such as a checklist, rating scale, assessment rubric, observation schedule, portfolio assessment, incidental records etc. need to be prepared. Even the students may been courage to adopt self-assessment techniques using the assessment rubrics.

The students need to be assessed continuously based on the below mentioned assessment criteria at project planning stage. The Project guide must prepare detailed rubric(s) for each criteria to have valid and reliable assessment.

Assessment Scheme for Minor Project

S. No.	Suggested Assessment Criteria	Suggested Weightage (%)
1.	Identification of Area/Problem Statement	10
2.	Literature Survey	20
3.	Formulation of Project Title	10
4.	Clarity in Formulation of Outcomes of The Project	10
5.	Preparation of Synopsis	30
6.	Presentation of Synopsis	20
	Total	100
