Curriculum of Diploma Programme

in

Electrical Engineering

Department of Science, Technology and Technical Education (DSTTE), Govt. of Bihar

State Board of Technical Education (SBTE), Bihar

Semester – VI						
Teaching & Learning Scheme	e					

Course	Category	CourseTitles	Teaching & Learning Scheme (Hours/Week)					
Codes	of course		Classroom (C	Instruction I)	Lab Instruction(LI)	Notional Hours	Total Hours	Total Credits (C)
			L	Т		(TW+ SL)	(CI+LI+TW+SL)	
2420601	PCC	Utilization of Electrical Energy	02	01	-	02	05	04
2420602	PCC	Electrical Installation, Testing and Commissioning	03	-	04	02	09	06
2420603	PEC	Programme Electives* - Any One	03	-	04	02	09	06
2400604	OEC	Open Electives**/ COE (Advanced - Any One)	03	-	04	02	09	06
2420605	PSI	Major Project (Common for all programmes)	-	-	08	04	12	06
2400408	NRC	Employability Skills Development (Common for All Programmes)	01	-	-	-	01	01
2400110	NRC	Community/ Society Development (AIML, AE, CSE, ELX (R), CHE, EE, ME, ME (Auto), MIE, FTS, CACDDM, FPP)	01	-	-	-	01	01
		Total	13	1	20	12	46	30

Note: Prefix will be added to course code if applicable (T for Theory Paper, P for Practical Paper and S for Term Work)

Legend:

- CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)
- LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

- TW: Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)
- SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.
- C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)
- *: Data Communication / Industrial Drives/ Electrification of Building Complexes
- **: 3D Printing & Design/ Artificial Intelligence (AI)/ Drone Technology/ Electric Vehicle/ Industrial Automation & Control /IOT / Robotics
- Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

Semester - VI Assessment Scheme

			Assessment Scheme (Marks)							
		Course Titles	Theo Assessr (TA	ry nent)	Term work & S Assessi (TW	elf-Learning ment A)	Lab Assessment (LA)		-TWA+LA)	
Course Codes	Category of course		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA	
2420601	PCC	Utilization of Electrical Energy	30	70	20	30	-	-	150	
2420602	PCC	Electrical Installation, Testing and Commissioning	30	70	20	30	20	30	200	
2420603	PEC	Programme Electives* - Any One	30	70	20	30	20	30	200	
2400604	OEC	Open Electives**/ COE (Advanced - Any One)	30	70	20	30	20	30	200	
2420605	PSI	Major Project (Common for all programmes)	-	-	20	30	50	100	200	
2400408	NRC	Employability Skills Development (Common for All Programmes)	25	-	-	-	-	-	25	
2400110 Community/Society Development		25	-	-	-	-	-	25		
		Total	170	280	100	150	110	190	1000	

Note: Prefix will be added to course code if applicable (T for Theory Paper, P for Practical Paper and S for Term Work)

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

- *: Data Communication / Industrial Drives/ Electrification of Building Complexes
- **: 3D Printing & Design/Artificial Intelligence (AI)/ Drone Technology/ Electric Vehicle/ Industrial Automation & Control /IOT / Robotics

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

- A) Course Code
- : 2420601(T2420601/S2420601)
- Course Title : Utilization of Electrical Energy
- C) Pre- requisite Course(s)

: Power Electronics, DC Machines and Transformer, AC Rotating machines.

D) Rationale

B)

Electrical Energy plays a key role in achieving the desired economic growth of a country. Efficient utilization of electrical energy is not only conservational but also saves capital investment. Electrical energy occupies the top grade in the energy hierarchy. It finds innumerable uses in home, industry, agriculture and in transport etc., This course is designed to introduce the students to the concepts, principles and applications related to the utilization of electrical energy. The course will enable the students to acquire knowledge on different types utilization aspects of electrical energy with special emphasis on different lighting and welding system used in domestic and Industrial applications, electric heating, in industries and controlling the speed of a process using Drives, various aspects related of electric traction, economic aspects of utilizing and <u>conserving electrical energy</u> and also about energy efficiency.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psycho motor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Select various lamps and fittings for a given application.
- **CO-2** Select heating and welding scheme for given application.
- **CO-3** Control the speed of a given DC/AC motor using electrical drives.
- **CO-4** Select appropriate track electrification system for a given application.
- **CO-5** Estimate the Economics of Utilizing Electrical Energy.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	2	3	2	-	-	3		
CO-2	3	2	2	2	-	-	3		
CO-3	3	3	2	2	3	-	2		
CO-4	3	3	2	2	-	-	2		
CO-5	3	2	3	3	-	3	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

		Scheme of Study (Hours/Week)							
Course Course Classroom Code Title Instruction Inst (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)				
		L	Т						
2420601	Utilization of Electrical Engineering	02	01	-	02	05	04		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

				As	sessment So	cheme (Mar	ks)		
			Theory Assessment (TA)		Term	Term Work&		sment	-
					Self-Learning Assessment (TWA)		(LA)		+TWA+LA
	Course Code	Course little	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
	2420601	Utilization of Electrical Engineering	30	70	20	30			150

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self-Learning Assessment (Includes assessment related to student performance in assignments, seminar, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally
 (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment,
 micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of
 output/product/ presentation related to these activities will be carried out by external faculty/expert (External
 Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective
 course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2420601

Major Theory Session C	Outcomes (TSOs)	Units	Relevant
			Cos
			Number(s)
TSO 1a. Define the given to	erms related to	Unit 1.0 Illumination	C01
Illumination. TSO 1b. State the laws of Il TSO 1c. Explain the workin light. TSO 1d. List different types fitting. TSO 1e. Describe the const the given LED light TSO 1f. Select LED light for application(s)	lumination. g principle of LED s of LED light cructional details of ts fitting. r the given	 1.1 Definition of Illumination 1.2 Light, Luminous flux, Luminous intensity, Lumen, Candle power, Lux or Meter candle, mean horizontal candle power (MHCP), Mean spherical candle power (MSCP), Mean hemispherical candle Power (MHSCP), Reduction factor, Lamp efficiency, Utilization factor, Depreciation factor, Space height ratio, Solid angle, Absorption factor, Reflection factor. 1.3 Laws of Illumination - Inverse square law, Lamberts Cosine law. 1.4 LED light; Working Principle. 1.5 Types of LED lights, features and its applications; Gallium Phosphide (GaP) Aluminum Gallium Phosphide (AlGaP) Gallium Arsenide (GaAs) Gallium Arsenide Phosphide (GaAsP) Aluminum Gallium Arsenide Phosphide (AlGa AsP) Gallium Indium Nitride (GalnN) Silicon Carbide (SiC) 	
TSO 2a State the advant heating.	tages of electrical	Unit2.0 Electrical Heating and Welding.	CO1, CO2
TSO 2b List the essential given heating elem	requirement of the nents.	2.1 Need and significance of Electrical heating;2.2 Essential requirements of a good heating	
TSO 2c Explain the cau heating elements.	ses of failure of	 2.3 Materials of heating element - Nickel chromium alloy, Iron chromium aluminum 	
TSO 2d Describe the give system with the h and detail out the followed.	n type of heating help of neat sketch safety precautions	 alloy, Molybdenum dislicide and silicon carbide 2.4 Causes of failure of heating element. 2.5 Methods of Electric heating: 	
TSO 2e Explain the worki arc furnace.	ng of given type of	Resistance heating,Arc heating,	
TSO 2f Carry out a give following safety pr	n type of welding ecautions.	 High frequency heating: Induction heating, Dielectric heating. 	

Major	Theory Session Outcomes (TSOs)	Units	Relevant
			Cos
			Number(s)
TSO 2g	Explain the use of welding	2.6 Electric arc furnace, types, working and	
	applications.	Direct	
TSO 2h	Explain the use of rectifier circuit for	 Indirect 	
130 211	different welding applications	2.7 Welding, types, working and applications of;	
TSO 21	Write the store of safe practices	 Resistance welding 	
130 21	followed during heating and welding	 Electric arc welding 	
		2.8 Welding transformers and rectifiers.	
TSO 22	Explain the function of major	6/8 during heating and welding.	603
130 54	components of an electric drive with	Unit-5.0 Electrical Drives	COS
	the belo of a block diagram	3.1 Block diagram: Source, Power modulator,	
TSO 2h	State the factors governing selection	Electric motor, Control unit, sensing unit and	
130.30	of electric motors in an electric drive	load.	
TSO 3c	Steady state and transient	3.2 Motors used for Electrical drives; DC series,	
130 30	characteristics of various Motors	Shunt and Separately excited motors, three	
DE OZT	Differentiate between	phase Induction motor.	
150 50	(i) AC and DC drive	3.3 Torque/speed, Torque/Current and	
	(ii) Individual and group drive	Speed/Current characteristics of DC series,	
		Shunt and Separately excited motors,	
		Induction motor.	
		3.4 Comparison of AC, DC drives and Individual,	
		group drive.	
TSO 4a	Explain the characteristics of Ideal traction system	Unit-4.0 Electric Traction Drives	CO4, CO3
TSO 4b	Compare the Electric and Diesel	4.1 Requirement of Ideal traction system	
	traction.	4.2 Type of traction system used in India.	
TSO 4c	Explain the various traction	Electric Traction Discel Traction	
	electrification system.	Diesei Traction System of track electrification:	
TSO 4d	Explain the various overhead	DC system	
	electrical power supply in traction	 Single phase 25KV A.C. 	
	system.	Composite system.	
TSO 4e	Explain the various components in	4.4 Electrical Power supply in Traction system: Sub	
	electric traction system with the help	Sectioning and Parallel Post (SSP), Sectioning	
	of a Block diagram.	Post (SP), Traction sub station	
TSO 4f	Enlist the advantages of pantograph	function of each part	
	collector over other types of current	4.6 Current collecting system: Overhead wire and	
	collectors in overnead lines.	conductor rail system, Current collector	
TSO 4g	Describe the general power supply	(Pantograph types).	
	system in India	4.7 Traction services: Urban, Suburban, Main line	
TSO 4h	Describe the different traction	services, Metro rall and Monorall.	
130 411	systems used worldwide.		
TSO5a	State economic aspect of electrical energy.	Unit-5.0 Economics of Utilizing Electrical Energy	CO5
TSO5b	Differentiate between different	5.1 Economic Aspects of Utilizing Electrical Energy.	
	charges of electricity.	5.2 Pricing of Electrical Energy:	
TSO5c	Calculate electric tariff for a given	Fixed Charges Semi Fixed Charges	
	consumer.	Running Charges.	

Majo	r Theory Session Outcomes (TSOs)		Units	Relevant Cos Number(s)
TSO5d	Improve power factor using static capacitor.	5.3	Tariff, Formulation of Electrical Tariffs and Types – Domestic, Commercial and Industrial	
 TSO5e Differentiate between Energy efficiency and energy conservation. TSO5f Describe the energy conservation measures used in Electric heating, refrigeration, air conditioning and illumination. 	5.4	Consumers. Power Factor, Causes and disadvantages of Low Power Factor, Power Factor Improvement - using Static Capacitors, its locations, Most Economical Power Factor. Automatic Power Factor Controller Energy efficiency and Energy efficient		
		5.6	equipment (Star lebelling) Energy Conservation: Importance and need of Energy Conservation	
		5.7	Measures for Energy Conservation in - (i) Electric Heating (ii) Refrigeration and Air Conditioning (iii) Illumination	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: (Not Applicable)

- L) Suggested Term Work and Self Learning: S2420601 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a.** Assignments: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

i. List various applications of different Lighting schemes used in our daily life.

ii.List applications of different modes of heat transfer.

iii.Compare the various types of power supply required for different types of welding.

iv.Draw the characteristics of a welding generator

v.List importance and need of Energy conservation.

vi.Prepare a report on various types of traction system.

vii.Prepare a report on various tariff structure of Bihar.

viii.Prepare energy bill based on energy consumption of institute.

b. Micro Projects:

- Design a circuit to test whether a given Illumination control circuit is working or not.
- Build a circuit of lighting of a four wheeler.
- Build a circuit of efficient lighting of auditorium.
- Build circuit for electric arc furnace showing the arrangements of OCBs, control panels, CTs through relays, furnace transformer and arrangement of electrode movement.
- Build and test inverter circuit for emergency lighting.
- Prepare a model of Railways traction system.
- Design a motor controller circuit that can control the speed and direction of the chosen motor.

b. Other Activities:

- 1. Seminar Topics:
 - Compare different types of lamps
 - Smart metering
 - Green building Design.
 - Energy conservation and management
 - Electric Vs diesel Traction.

2. Visits:

- Survey the market and submit the report of available different types of lamps.
- Visit the nearby workshop for Electric arc welding, observe and prepare a report and submit.
- Visit nearby Electric locomotive workshop and Prepare a report and submit based on your observations.
- Visit a railway loco shed to observe various components and working of electric locomotive and prepare a technical report.

3. Self-Learning Topics:

- Electrical system design.
- Future trends in Electric Traction.
- Efficient and Economic approach of saving of electrical energy.
- Robotic welding
- Smart manufacturing
- Electric Vehicle
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix							
	Theory Asses	sment (TA)**	Term Wor	Term Work Assessment (TWA)			ment (LA) [#]	
60 6	Progressive Theory Assessment	End Theory Assessment (ETA)	Term Wo A	ork & Self L ssessment	earning	Progressive Lab	End Laboratory Assessment (ELA)	
cos	Class/Mid Sem Test		Assignments	Micro Projects	Other Activities*	(PLA)		
CO-1	25%	25%	10%	20%	20%	-	-	
CO-2	10%	10%	25%	20%	20%	-	-	
CO-3	15%	25%	15%	20%	20%	-	-	
CO-4	25%	15%	15%	20%	20%	-	-	
CO-5	25%	25%	30%	20%	20%	-	-	
Total	30	70	20 20 10		10	-	-	
Marks				50				

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

The percentage given is approximate

• In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total	ETA (Marks)			
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0 Illumination	12	CO1	16	4	8	4	
Unit-2.0 Electrical Heating and Welding.	6	CO1, CO2	6	4	1	1	
Unit-3.0 Electric Drives	12	CO2, CO3	18	4	6	8	
Unit-4.0 Electric Traction Drives	6	CO2, CO4	10	4	3	3	
Unit-5.0 Economics of Utilizing Electrical Energy	12	CO2, CO5	20	4	6	10	
Total	48	-	70	20	24	26	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical): (Not Applicable)

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software: (Not Applicable)

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Utilization Of Electric Energy:	Er. Tarlok Singh	S.K. Kataria & Sons; Reprint 2013 edition (1
	(Including Electric Drives And		January 2013) ISBN-10: 9380027842
	Electric Traction)		ISBN-13: 978-9380027845
2.	Utilization of electric energy	M.A. Chaudhari	Niraliprakashan(1 January 2020)
			ISBN-10: 9389686997
			ISBN-13: 978-9389686999
3.	Generation and Utilization	S. Sivanagaraju, D. Srilatha	Pearson Education India, 2010;
	Electrical Energy	and M. Balasubba Reddy	ISBN 9788131733325
4.	Generation, Distribution and	C.L. Wadhwa	New Age International Private Limited;
	Utilization Electrical Energy		Third edition (1 January 2015)
			ISBN-10: 8122438539
			ISBN-13: 978-8122438536
5.	Electric Energy Generation,	Dr.V. Thiyagarajan	Lakshmi Publications, ISBN-10 8131767744
	Utilization and Conservation		ISBN-13 978-8131767740
6.	Electric Energy Generation,	Dr.C.R. Balamurugan,	MAGNUS Publications
	Utilization and Conservation	A.N.Abirami ,	
		S.GaneshKumaran	

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
7.	Utilisation of Electric Power: Including Electric Drives and Electric Traction.	N.V, Suryanarayana	New Age International Publication. 2 nd Edition, 2014, ISBN: 9788122436815
8.	Utilization of Electrical Power	R. K. Rajput	Laxmi Publication(P) Ltd. New Delhi 2 nd Edition, 2016, ISBN :9788131808290
9.	Modern Electric Traction	H.Partap	Dhanpat Rai & Sons, Delhi, 2013, ISBN:1234546147206
10.	A Text Book. of Electrical Power	S.L. Uppal	Khanna Publications, Delhi ,2009, ISBN :9788174092380

(b) Online Educational Resources:

- 1. https://www.youtube.com/watch?v=i8eRqGmKCAA&list=PLYMFxwEX05wGl0ZHY9ek1wV1YgkU BrOnK&index=4
- https://www.youtube.com/watch?v=emBwpl8Jy1w&list=PLYMFxwEX05wGl0ZHY9ek1wV1YgkU BrOnK&index=5
- 3. https://www.youtube.com/watch?v=GGtU5l69COs&list=PLYMFxwEX05wGl0ZHY9ek1wV1YgkU BrOnK&index=3
- https://www.youtube.com/watch?v=81yaH-0smyo&list=PLYMFxwEX05wGl0ZHY9ek1wV1YgkUBrOnK&index=2
- 5. https://www.youtube.com/watch?v=kejGqDhjOMo&list=PLYMFxwEX05wGl0ZHY9ek1wV1YgkU BrOnK&index=8
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational resources before use by the students.
- (c) Others:
 - 1. Learning Packages
 - 2. Lab Manuals
 - 3. Manufacturers 'operating Manual

- A) Course Code : 2420602(T2420602/P2420602/S2420602)
- B) Course Title
- C) Pre- requisite Course(s)

: Electrical Installation, Testing and Commissioning

- . Electrical installation, resting and commissioning
- equisite Course(s) : AC machines, DC machines & Transformers and switchgear & Protection

D) Rationale

Power Systems and Industrial Plants consist of number of electrical drives, transformers, generators, circuit breakers and other equipment which requires installation, testing, commissioning and regular maintenance for smooth operation to achieve desired objective(s) of the power system and industrial plants and also prevent permanent break down. Electrical engineering diploma pass outs are required to carry out/supervises installation, testing, commissioning and maintenance of various electrical equipment in power stations, substations and industry. This course will enable the students to understand the concepts, principles and acquire basic skills of installation, testing, commissioning and maintenance of electrical equipment in power stations, substations and industry.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Install electrical equipment/machines following standard procedure.
- **CO-2** Test various electrical equipment/machines before commissioning.
- **CO-3** Commission various electrical equipment/machines.
- **CO-4** Maintain various electrical equipment/machines and domestic appliances.
- CO-5 Follow safe practices to prevent accidents while using electrical equipment/machine

F) Suggested Course Articulation Matrix (CAM):

Course	Programme Outcomes(POs) Course											
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2			
CO-1	2	-	2	2	1	1	2					
CO-2	2	2	-	2	1	-	1					
CO-3	2	2	1	2	1	-	-					
CO-4	2	2	1	2	1	1	1					
CO-5	2	-	2	3	1	1	2					

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course		Scheme of Study (Hours/Week)						
Code	Title	Classroom Instruction (Cl)		Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)
		L	т						
2420602	Electrical Installation Testing and Commissioning	03	-	04	02	09	06		

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			Α	ssessment S	cheme (Mar	·ks)		
			sessment	Term	Work &	Lab Asse	essment	
		(TA	A)	Self-Le	earning	(L	A)	
				Asses	sment			(A
				(T\	VA)			A+I
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TW
2420602	Electrical Installation Testing and	30	70	20	30	20	30	200
	Commissioning							

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

• ETA & ELA are to be carried out at the end of the term/ semester.

• Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

 Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self-Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2420602

Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant
			COs
			Number(s)
TSO 1a.	Describe the procedure for unloading of the given heavy electrical equipment at site.	Unit-1.0 Installation of Electrical Equipment	CO1
TSO 1b. TSO 1c.	Describe the procedure for handling, inspection and storage of the given static and rotating electrical equipment. Describe the procedure to select tools/ instruments for installation of the given electrical equipment.	 1.1 Unloading of electrical equipment at site. 1.2 Inspection of electrical equipment at site. 1.3 Storage of electrical equipment at site. 1.4 Foundation of electrical equipment at site. 1.5 Alignment of electrical machines. 1.6 Technical report, Inspection, storage and handling of transformer switchgaar and meters. 	
TSO 1d.	Describe the installation procedure of the given equipment.	 1.7 Tools/Instruments necessary for installation. 1.8 Installation of electrical equipment. 	
TSO 2a.	Explain the importance of testing the given type of electrical machine.	Unit-2.0 Testing of Electrical Equipment	CO1, CO2
TSO 2b.	Explain the need for the given type of test/s on the specified machine.	 2.1 Testing: Need and standards, tolerances. 2.2 Testing Types: Routine, Type and Special Tests, Methods of testing: Direct indirect and 	
TSO 2c.	Explain the concepts of given type of tests.	regenerative with advantages and applications.	
TSO 2d.	Describe the pre-commissioning test of the given electrical equipment/machines.	2.3 Tests before commissioning of electrical equipment-Electrical and Mechanical test.	
TSO 2e.	Describe the procedure of tests on the given electrical equipment/machines.	 2.4 Preparations before commissioning of power transformer. 2.5 Testing (Routine, Type and Special Tests) of Transformer, Induction motor, alternator, synchronous motor and electrical power installation. 	
TSO 3a.	Describe the commissioning procedure to be adopted for commissioning the given equipment.	Unit-3.0 Commissioning of Electrical Equipment	CO3, CO4
TSO 3b.	Explain the standard tests to be performed on the given type of insulation oil.	phase induction motor and switchgears. 3.2 Transformer oil: Properties, testing and	
TSO 3c.	Describe the procedure of measuring insulation resistance of the given electrical equipment/machines.	filtering/purifying, standard tests as per IS code.3.3 Measurement of insulation resistance and Polarization Index, Factors affecting the	
TSO 3d.	Explain the various factor affecting the insulation resistance.	insulation resistance of insulating materials. 3.4 Drying the winding of electrical equipment.	
TSO 3e.	Explain the procedure of drying the winding of the given type of electrical equipment/machines.	3.5 Test report on commissioning and test certificate.3.6 Gradually loading of electrical equipment.	
TSO 3f.	Explain the need for gradual loading of electrical equipment	3.7 Final inspection after commissioning.	
TSO 4a.	Explain the need for maintenance for the given type of electrical equipment.	Unit-4.0 Maintenance and Troubleshooting of Electrical Equipment	CO3, CO4
TSO 4b.	Explain the relevant type of maintenance required for the given type of electrical equipment.	4.1 Importance of maintenance, Reasons of failure of electrical equipment.	

Major Theory Session Outcomes (TSOs)	Units	Relevant
		COs
		Number(s)
TSO 4c. Prepare maintenance schedule for the given type of electrical equipment.TSO 4d. Explain the reason of failure of electrical	4.2 Maintenance: routine, breakdown, preventive and predictive maintenance4.3 Recommended Maintenance Schedules:	
equipment due to poor maintenance. <i>TSO 4e.</i> State the probable faults due to poor maintenance in various electrical equipment.	transformer, induction motor (single phase and three phase), three phase alternator, synchronous motor, circuit Breaker, overhead line, storage Battery.	
<i>TSO 4f.</i> List the various causes of fault in electrical machines	4.4 Probable faults due to poor maintenance in transformer, induction motor, circuit breaker, overhead lines and battery	
equipment. <i>TSO 4h.</i> Prepare trouble shooting chart for the given	4.5 Causes of faults in electrical equipment (Internal and external).	
electrical equipment, machines and domestic appliances.	 4.6 Instruments and tools for trouble shooting. 4.7 Common troubles in electrical equipment -DC Machines, AC Machines, Transformers, Circuit-breaker, under-ground cable, electrical Installation. 	
	4.8 Need of trouble shooting chart, troubleshooting chart for DC Motor, DC Generator, Transformer, Synchronous Motor, Induction Motor, Circuit- breaker.	
	4.9 Trouble shooting chart for Domestic appliances- electrical iron, ceiling fan, washing machine, Air cooler, Vacuum cleaner, fluorescent tube light: Construction, working and troubleshooting chart	
<i>TSO 5a.</i> Describe the safety actions for the given situation.	Unit-5.0 Electrical Accidents and Safety	CO4, CO5
<i>TSO 5b.</i> Explain the hazards involved for the given situation and action.	5.1 Safe Practices: Safety, hazard, accident, major accident hazard, responsibility, authority, accountability, monitoring, LF, Act & statutory	
<i>TSO 5c.</i> Describe the responsibilities of the supervisor in the given hazardous or accident situation.	regulations for safety of persons and equipment working with electrical installation, Dos & Don'ts for substation operators as listed in IS	
<i>TSO 5d.</i> Explain the level of accountability of the supervisor in the given hazardous or accident situation.	5.2 Electric Shocks: Meaning & causes of electrical accidents, factors on which severity of shock depends, Procedure for rescuing the person	
<i>TSO 5e.</i> Explain the monitoring actions to be taken by the supervisor while working in the given hazardous or accident situation.	 who has received an electric shock, methods of providing artificial respiration. 5.3 Precautions to be taken to avoid fire due to electrical reasons, operation of fire. 	
<i>TSO 5f.</i> Describe the procedure to be followed for installation of fire extinguishers	extinguishers. Fire extinguishers-Fixed installation and portable devices.	
<i>TSO 5g.</i> State the principal characteristics and related precautions for safety of equipment earthed by the specified class.	5.4 Earthing of electrical equipment (refer IS code IS 3043-1987): Objectives, classification of electrical equipment with regard to protection against electric shock: class 0 to III.	

Note: One major TSO may require more than one Theory session/Period.

Pract	ical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1.	Prepare layout of the wiring	1.	Preparation of layout of wiring for installation of given machine with specification	CO1
LSO 2.1.	Perform routine test on single phase Induction motor.	2.	Routine test of single phase Induction motor	CO2
LSO 3.1.	Perform routine test on three phase Induction motor	3.	Routine test on three phase Induction motor	CO2
LSO 4.1.	Test insulating oil	4.	Testing of insulating oil	CO2
LSO 5.1.	Prepare test reports of an electrical machine after commissioning.	5.	Preparation of test report of an electrical machine after commissioning.	CO3
LSO 6.1.	Measure insulation resistance of a winding/cables/wiring installation	6.	Measurement of insulation resistance of a winding/cables/wiring installation	CO3
LSO 7.1.	Prepare maintenance schedule for power transformer.	7.	Preparation of maintenance schedule of power transformer.	CO4
LSO 8.1.	Prepare maintenance schedule for induction motor.	8.	Preparation of maintenance schedule for induction motor.	CO4
LSO 9.1.	Troubleshoot a ceiling fan	9.	Troubleshooting of a ceiling fan	CO4
LSO 10.1	Measure earth resistance of a Installation.	10.	Measurement of earth resistance of installation of building/domestic wiring and appliances by different methods	CO4

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2420602

- L) Suggested Term Work and Self Learning: S2420602 Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - i. Prepare a foundation plan for installation of a given motor.
 - ii. Prepare installation report of a given rotating electrical machine.
 - iii. Prepare a commissioning report of installed electrical equipment.
 - iv. Prepare the specification of the commonly used hand tools by electrician.
 - v. Prepare a chart on the procedures to be followed for artificial respiration of an electrocuted person.

b. Micro Projects:

- 1. Prepare a report on diagnosis of transformer oil sample by conducting various tests on it.
- 2. Record the procedures and obtain the typical values of the earth resistance used for equipment earthing of a given installation. Comment on the result obtained as per IS.
- 3. Prepare a breakdown maintenance report for repair of a given domestic appliance.

c. Other Activities:

- 1. Seminar Topics:
 - Foundation of transformer.
 - Testing of Induction motor as per IS.
 - Safety sign used for electrically hazardous area.
- 2. Visits: Visit electrical machine manufacturing unit and collect data of various tests conducted on it.

- 3. Self-Learning Topics:
 - Precautions to be taken during handling and installation of heavy electrical equipment.
 - IS code of power transformer.
 - Maintenance of UPS.
 - Maintenance of solar lighting system
 - Types of fire extinguishers
 - Instruments and accessories for troubleshooting.
 - IS code of earthing
 - Comparison between equipment earthing and system earthing.
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	ourse Evalu	ation Matrix			
	Theory Asses	sment (TA)**	Term W	ork Assessr	nent (TWA)	Lab Assessment (LA) [#]		
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term Work & Self Learning Assessment			Progressive Lab Assessment	End Laboratory Assessment	
	Class/Mid		Assignments	Micro	Other Activities*	(PLA)	(ELA)	
	Sem Test			Projects				
CO-1	15%	15%	15%	-	-	20%	20%	
CO-2	25%	25%	10%	25%	-	10%	20%	
CO-3	20%	20%	15%	25%	33%	15%	20%	
CO-4	25%	25%	30%	25%	33%	15%	20%	
CO-5	15%	15%	30%	30% 25% 34%		40%	20%	
Total	30	70	20 20 10			20	30	
Marks				50				

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.
- N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Installation of Electrical Equipment	7	CO1	10	3	3	4
Unit-2.0 Testing of Electrical Equipment	12	CO1, CO2	17	5	6	6
Unit-3.0 Commissioning of Electrical Equipment	10	CO3, CO4	15	4	5	6
Unit-4.0 Maintenance and troubleshooting of Electrical Equipment	12	CO3, CO4	18	5	5	8

Diploma in Electrical Engineering

Unit-5.0 Electrical Accidents and Safety	7	CO4, CO5	10	3	3	4
Total	48	-	70	20	22	28

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Delevent	F	PLA/ELA	
S.		Relevant	Perform	mance	Viva-
No.		COS Number(c)	PRA*	PDA**	Voce
		Number (3)	(%)	(%)	(%)
1.	Preparation of layout of wiring for installation of given machine with specification	CO1	60	30	10
2.	Routine test of single-phase Induction motor	CO2	50	40	10
3.	Routine test on three phase Induction motor	CO2	50	40	10
4.	Testing of insulating oil	CO2	60	30	10
5.	Preparation of test report of an electrical machine after commissioning.	CO3	60	30	10
6.	Measurement of insulation resistance of a winding/cables/wiring installation	CO3	60	30	10
7.	Preparation of maintenance schedule of power transformer.	CO4	60	30	10
8.	Preparation of maintenance schedule for induction motor.	CO4	50	40	10
9.	Troubleshooting of a ceiling fan	CO4	50	40	10
10.	Measurement of earth resistance of installation of building/domestic wiring and appliances by different methods	CO4	60	30	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Voltmeter	Moving iron and Moving Coil type 0-500 V	All

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
2.	Ammeter	Moving iron and Moving Coil type 0-50 A	1,2
3.	Digital earth tester	Connecting wires and spikes with provision for measuring soil resistivity	6, 7, 8, 10
4.	Digital Multimeter	0-750V AC,0-1000V DC, 10 microamp-10-amp AC, DC, Resistance and continuity measurement	6, 7, 8, 10
5.	Insulation tester	Test voltage selector switch for selection of 500V,1000V,2500V and 5000V Measurement Insulation resistance up to Giga ohms with facility for measuring polarization index	3,4
6.	Single Phase Wattmeter	Pressure coil 0-150-300V Current coil 0-2.5-5Amp	6, 7, 8, 10
7.	Clamp on meter	Voltage: 0-750VAC Current: up to 100 A	10

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Operation & Maintenance of Electrical Machines Vol - II	B. V. S. Rao	Media Promoters & Publisher Ltd. Mumbai, ISBN 13, 8185099197
3.	Testing Commissioning operation and maintenance of Electrical Equipment.	Rao. S	Khanna Publication (Latest edition), New Delhi ISBN: 978-81-7409-185-7
4.	Installation, commissioning and maintenance of Electrical equipment	Singh Tarlok	S.K.Kataria and Sons, New Delhi, Second edition-2012 ISBN: 978-93-5014-377-3

(b) Online Educational Resources:

- 1. http://cercind.gov.in/ElectSupplyAct1948.pdf
- 2. www.lce.com/pdfs/The-PMPdM-Program-124.pdf
- 3. www.iapa.ca/pdf/prevent.pdf
- 4. www.pfeiffereng.com/Principals%20of%20Electrical%20Grounding.pdf
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Manufacturers manual
- 2. Lab Manuals

- A) Course Code : 2420603A(T2420603A/P2420603A/S2420603A)
- B) Course Title : Data Communication
- C) Pre- requisite Course(s)

: Data Communication

: Introduction to IT system, Basics of computer networking

D) Rationale

Data communication deals with the transmission of digital data through networks. Many applications like Airline Reservations, Railway reservations, e-banking, e-governance, Online Shopping, and e-learning can be managed with a single click. Diploma Engineers should be able to select, classify, install, troubleshoot, and maintain different industrial data communication networks. This course gives vital basic concepts and skills related to data communication and networking that are essential for diploma engineers and prepare them for the present needs of Industry.

E) Course Outcomes (COs): The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry-oriented COS associated with the above mentioned competent.

After completion of the course, the students will be able to-

- **CO-1** Maintain wired computer network topologies.
- **CO-2** Use the relevant network model for the specified data communication system.
- **CO-3** Maintain relevant transmission medium and modem for data transmission.
- **CO-4** Analyze error detection/correction and flow control of data in the data network.
- **CO-5** Configure the network component with IP address assignment.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen t of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO- 1	PSO- 2
CO-1	3	1	-	2	1	1	1		
CO-2	3	1	2	1	-	1	1		
CO-3	3	2	2	1	_	1	1		
CO-4	2	1	1	1	-	1	-		
CO-5	3	-	2	1	-	1	1		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course			S	cheme of Stu (Hours/Week	dy <)	
Code	Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)
		L	Т				
2420603A	Data Communication	03	-	04	02	09	06

Legend:

- CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)
- LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

- SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.
- C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

H) Assessment Scheme:

			A	ssessment S	cheme (Mar	ks)		
	Course Title	Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		+TWA+LA)
Course Code		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
2420603A	Data Communication	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

• ETA & ELA are to be carried out at the end of the term/ semester.

- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

J)

Theory Session Outcomes (TSOs) and Units: T2420603A

Relevant Units **Major Theory Session Outcomes (TSOs)** COs Number(s) Unit-1.0 Fundamentals of Data TSO 1a. Explain the function of the given component in the CO1 process of data Communication. **Communication and Network Topology** TSO 1b. Describe the given data transmission method with 1.1 Data communication and its characteristics its frame format Basic block diagram of data TSO 1c. Explain the given source of noise and its effect. communication system TSO 1d. Analyze the computer network considering Components of data communication: particular topology. Transmitter, Receiver, Medium, Message, error, noise, Protocol. TSO 1e. Classify networks on the basis of the given Standards, Standard organizations parameter. 1.2 Data Transmission: Serial, Parallel Synchronous, Asynchronous, Isochronous transmission 1.3 Transmission characteristics: Signaling rate, data rate, bit rate, baud rate 1.4 Need of computer networks, Network criteria, advantages of networking, Schematic diagram, working 1.5 Network topologies: Mesh, Star, Bus, Tree, Ring and Hybrid topologies: working, disadvantages and applications. 1.6 Network Classification: Based on Transmission Technologies: Point to-point, Multipoint Physical size (scale): PAN, BAN, LAN, MAN, WAN, VPN Based on Architecture: Peer to Peer, Client Server, advantages of Client Sever over Peer-to-Peer Model TSO 2a. Describe the function of the given layer of TCP/IP Unit-2.0 Network Models CO2 Reference model. 2.1 TCP/IP protocol suite with define protocols TSO 2b. Explain the relationship of layers with addresses in respective Layers: Physical layer, Data Link in TCP/IP. Layer, Network Layer, Transport Layer, and TSO 2c. Differentiate between various addressing **Application Laver** schemes for TCP/IP. 2.2 Addressing in TCP/IP: Physical, logical, Port TSO 2d. Describe the functions of the given layer of OSI and specific reference model. 2.3 The ISO-OSI model: Physical layer, Data Link Layer, Network Layer, Transport Layer, Session Layer, Presentation Layer, **Application Layer** CO3 TSO 3a. Describe the principle of given multiplexing **Unit-3.0 Physical Layer** technique. 3.1 Multiplexing: Basic concept TSO 3b. Select the transmission media for transmitting **Frequency-** Division Multiplexing the given signal for the given application. Wavelength- Division Multiplexing Describe the construction of the given cable TSO 3c. Synchronous Time-Division with labeled sketches. Multiplexing TSO 3d. Compare different types of Transmission 3.2 Transmission medium: classification based medium on the basis of given parameter on electromagnetic wave spectrum 3.3 Guided Media- Performance and TSO 3e. Explain with sketches working of the given type applications of modem. Twisted pair (UTP, STP)cable-Compare different multiplexing/ switching techniques connector based on the given parameters. Coaxial cable-connector

Page- 3

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
	 Fiber-optic cable-connector 3.4 Introduction of Unguided Media- Radio waves, microwaves, Infrared and their applications 3.5 Modems classification: Broadband modem, DSL-ADSL, HDSL, VDSL 3.6 Switching: Circuit-switched networks Packet switched networks- Datagram approach, virtual circuit approach 	
<i>TSO 4a.</i> Describe the services provided by Data Link Layer.	Unit-4.0 Data Link Layer	CO4
<i>ISO 4b.</i> Describe the technique of the given error control method with examples.	4.1 Framing	
 TSO 4c. Explain with sketches the given type of flow control used in the data link layer with justification. TSO 4d. Compare the characteristics of given type of Protocol. TSO 4e. Select the appropriate protocol for error free transmission of given data. 	 4.2 Flow control 4.3 Error control Types of errors: Single bit and Burst errors Error detection and correction 4.3 Protocol Sliding window protocol: One-bit sliding window protocol 4.4 Point to Point Protocol: service provided by PPP, Frame format PPP and Transition phases of PPP 4.5 Ethernet and IEEE 802.3 4.6 MAC Addresses and Switching 	
<i>TSO 5a.</i> Justify the function of the given network device.	Unit-5.0 Network, Transport and Application	CO5
 TSO 5b. Differentiate between class-full and classless addressing. TSO 5c. Explain the role of NAT in address depletion. TSO 5d. Explain the given type of Routing with example. TSO 5e. Describe the services provided by the transport layer/network layer /Application layer. TSO 5f. Describe the given type of network security technique. TSO 5g. Explain the fundamental concepts of SSL/TLS protocols. TSO 5h. Explain the security implications of use of different protocol versions. TSO 5i. Differentiate between symmetric and asymmetric encryption algorithms used in SSL/TLS. 	 5.1 Network devices: Repeater Hub Bridge Switches Router Gateway 5.2 Network layer Logical addressing: IPv4 Addresses: address space notations, classfull addressing, and class-less addressing 5.3 Network Address Translation (NAT), IPv6 addresses, Need for IPv6, Structure and address space 5.4 Network layer-Multicast Routing Protocols: Unicast, Multicast and Broadcast routing and applications of Transport Layer 5.5 Internet Control Message Protocol (ICMP), Address Resolution Protocol (ARP), Reverse Address Resolution Protocol (RARP) 5.6 Process to process delivery: UDP, TCP, RTP, SCTP, ports format and uses. 5.7 Application Layer services: Concept of DNS, FTP, HTTP/HTTPS, FTP and SMTP, DNS and 	

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
	5.8 Network Security Protocols (SSL/TLS)5.9 Security services: concepts of message and entity security service, Firewall	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2420603A

Prac	tical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO1.1	Identify the type of network topology used in your lab	1.	Analyze the type of network topology used in your lab and prepare technical specifications.	CO1
LSO1.2	Prepare Report.			
LSO 2.1	Connect a given number of computers in a ring topology.	2.	Connect computers in ring topology and transfer the data.	CO1
LSO 2.2	Verify data transfer in ring topology.			
LSO 3.1.	Connect a given number of computers in hybrid topology.	3.	Connect computers in hybrid topology and test the performance.	CO2
LSO 3.2.	Verify data transfer for hybrid topology.			
LSO 4.1	Establish WAN Network.	4.	Install/configure/Test peer-to-peer WAN	CO2, CO3
LSO 4.2	Configure WAN network.		and sharing of resources.	
LSO 4.3	Test WAN network.			
LSO 5.1	Configure and Install point-to-point network.	5.	Commissioning of Point-to-Point network in the laboratory.	CO3
LSO 5.2	Test point-to-point network.			
LSO 6.1	Connect the devices on LAN by patch cord and cross connection.	6.	Prepare patch cord and cross connection cables used for LAN connection.	CO1, CO3
LSO 6.2	Test the LAN connection.			
LSO 7.1	Install a LAN network using Switches/hubs.	7.	Test the performance of the Hub/Switches used in LAN network.	CO4, CO5
LSO 7.2	Test LAN network.			
LSO 8.1	Apply error detection methods.	8.	Locate the error bit using error detection	CO4
LSO 8.2	Find the error bit in the given data stream by using the different error detection methods.		methods.	
LSO 9.1	Apply error correction method.	9.	Correction of the error using error	CO4
LSO 9.2	Correct the error in a given data stream by applying the different error correction methods.		correction methods for the given data bits.	
LSO 10.1	Test the performance of given network using route command.	10.	Route command to test the performance of the given network.	CO5
LSO 11.1	Test and install Router, Repeater and Bridge.	11.	Install and test Router, Repeater and Bridge.	CO5
LSO 12.1	Assign IP address to the PC connected to the internet.	12.	IP address assignment to the PC connected to the internet.	CO5
LSO 13.1	Internet connectivity configuration.	13.	Configure/Test Internet connectivity.	CO1, CO5

Prac	tical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 14.1	Use FTP protocol to transfer file from one system to another system.	14.	Transfer file using FTP protocol.	CO2, CO5
LSO 15.1	Install a Firewall for the network security.	15.	Network security firewall installation.	CO5
LSO 16.1	Interconnect two PCs using RS232 cable	16.	Transfer of data between two PC	CO1, CO2
LSO 16.2	Configure the modem.		interconnected using RS232 cable and null	
LSO 16.3	Test the data transfer between two PC.		modem.	
LSO 17.1	Maintain the network devices- Router, Hub.	17.	Test the performance of the following network devices: Repeater, Hub.	CO5
LSO 18.1	Maintain the network devices- Bridge, Switches, Router.	18.	Test the performance of the following network devices: Bridge, Switches, Router.	CO5

- L) Suggested Term Work and Self Learning: S2420603A Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - Describe any four types of computer network topologies.
 - Explain the function of the data link layer.
 - Compare twisted pair cable and coaxial cable.
 - Differentiate between OSI and TCP/IP model.
 - List the functions of the application layer.
 - Describe the firewall working in detail.

b. Micro Projects:

- Perform Network Configuration Management for the small LAN network.
- Use a Secure File Transfer Application and transfer the file on the network.
- Maintain the Network Monitoring Dashboard.
- Use simulation software and test the performance of Network and Remote Desktop Application.
- Prepare a small report on IoT Sensors and Data Visualization.

c. Other Activities:

- 1. Seminar Topics:
 - 5G Technology and Its Impact on Data Communication
 - Network Security in the Age of Cyber Threats
 - IoT (Internet of Things) and Networking
 - Cloud Networking and Data Communication
 - Blockchain Technology and Networking
 - Wireless Networking Technologies
 - Network Monitoring and Analysis Tools
 - Wi-Fi Security and Best Practices
- 2. Visit: Visit to nearby Internet service provider and prepare a report of it in detail.
- 3. Self-Learning Topics:
 - Network Security Fundamentals
 - Wireless Networking Technologies

- IPv6 Implementation
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use the appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix									
	Theory Asses	sment (TA)**	Term W	ork Assessme	ent (TWA)	Lab Assessment (LA) [#]				
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term	Term Work & Self Learning Assessment			End Laboratory Assessment			
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)			
	Sem Test			Projects	Activities*					
CO-1	20%	20%	15%	-	-	20%	20%			
CO-2	20%	20%	10%	25%	-	10%	20%			
CO-3	20%	20%	15%	25%	33%	15%	20%			
CO-4	20%	20%	30%	25%	33%	15%	20%			
CO-5	20%	20%	30%	25%	34%	40%	20%			
Total	30	70	20 20 10			20	30			
Marks				50	1					

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

• The percentage given are approximate

• In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total	ETA (Marks)		
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Fundamentals of Data Communication and Network Topology	10	CO1	14	6	3	5
Unit-2.0 Network Models	10	CO1, CO2	14	4	5	5
Unit-3.0 Physical Layer	10	CO3	14	3	5	6
Unit-4.0 Data Link Layer	9	CO3, CO4	14	2	6	6
Unit-5.0 Network, Transport and Application Layer	9	CO5	14	5	5	4
Total	48	-	70	20	24	26

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Polovant	F	PLA/ELA	
S.	Laboratory Practical Titles	COs	Perform	mance	Viva-
No.	Laboratory Practical Titles	COS Number(c)	PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
1.	Analyze the type of network topology used in your lab and prepare technical specifications.	CO1	60	30	10
2.	Connect computers in ring topology and transfer the data.	CO1	60	30	10
3.	Connect computers in hybrid topology and test the performance.	CO2	60	30	10
4.	Install/configure/Test peer-to-peer WAN and sharing of resources.	CO2, CO3	60	30	10
5.	Commissioning of Point-to-Point network in laboratory.	CO3	60	30	10
6.	Prepare patch cord and cross connection cables used for LAN connection.	CO1, CO3	60	30	10
7.	Test the performance of the Hub/Switches used in LAN network.	CO4, CO5	60	30	10
8.	Locate the error bit using error detection methods.	CO4	60	30	10
9.	Correction of the error using error correction methods for the given data bits.	CO4	60	30	10
10.	Route command to test the performance of the given network.	CO5	60	30	10
11.	Install and test Router, Repeater and Bridge.	CO5	60	30	10
12.	IP address assignment to the PC connected to the internet.	CO5	30	60	10
13.	Configure/Test Internet connectivity.	C01C05	50	40	10
14.	Transfer file using FTP protocol.	CO2, CO5	40	50	10
15.	Network security firewall installation.	CO5	60	30	10
16.	Transfer of data between two PC interconnected using RS232 cable and null modem.	CO1, CO2	60	30	10
17.	Test the performance of the following network devices: Repeater, Hub.	CO5	60	30	10
18.	Test the performance of the following network devices: Bridge, Switches, Router.	CO5	60	30	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

		_ ·	– • ·
S.	Name of Equipment,	Broad	Relevant
No.	Tools and Software	Specifications	Experiment/Practical
			Number
1.	High end computers	Processor Intel Core i7 with Open GL Graphics Card, RAM 32 GB,	All
		DDR3/DDR4, HDD 500 GB, Graphics Card NVIDIA OpenGL 4 GB,	
		OS Windows 10	
2.	Personal Computers	Intel P-IV (or latest) , 2Gbyte , DDR2 , 500Gbyte HDD, Keyboard	1,2
	(For additional	onwards Installed with Windows 7 onwards and internet	
	Terminals)	connectivity	
4.	Routers	TP-Link standard router	6, 7, 8, 10,11
5	Smartnhone	May use Students handset of mohile	67810
5.	omarphone		0, 7, 0, 10
6	Demoster	Outdoor David Calenting Makila Circuit Davastar suggested	
0.	Repeater	Outdoor Band Selective Mobile Signal Repeater suggested	1,4,5,6,11
7.	Hub	Minimum 4 port Hub	1,4,5,6
8.	Switch	Minimum 8 port switch	1,4,5,6
9.	Connecting cables and	Ethernet Cables (Cat3, Cat4, Cat5, Cat5E, Cat6 and Cat7 cables).	1.2.3.4.5.6.7.8.9.10.11
5.	connectors	Cross-over cable (with RI-45 connector) Straight cable (with RI-	1,2,0, 1,0,0,7,0,0,120,111
		45 connector) and RI-11 for Telephone line	
10	Network Bridge	TP-Link standard bridge router	145578101 13
10.	Network Bridge		1,1,5,5,7,0,10,1,.15
4.4	rile-ille esfereses	On an and the second	A11
11.	Filezilla software	Open source software	All
12.	Any Freeware	Sophos XG Firewall Home Edition or ZoneAlarm Free Firewall	All
		2019 (but needs (Dot).Net Framework) or AVS Firewall or Avast	
		Free Antivirus or Comodo Free Firewall or Tiny Wall or Outpost	
		Firewall or Glass Wire or Private firewall or OpenDNS Home	
13.	Null Modem cable	RS-232 with 9 -pin	10, 11
14.	Packet Tracer	Packet Tracer 5.1 or higher version (Optional)	9
1	1		1

Q) List of Major Laboratory Equipment, Tools and Software:

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.			
1.	Computer Networks	Tannebaum Andrew S Wetherall David J	Pearson, New Delhi, 5 th edition 2013, ISBN 978-9332518742, latest edition
2.	Data and Computer Communication	Stallings Williams	Prentice Hall India, 10 th Edition, 2013, ISBN: 9780133506488 or latest edition
3.	Data Communication and Networking	Forouzen	Tata McGraw Hill, Education New Delhi 4 th edition 2017 ISBN-978-0070634145, latest edition
4.	Introduction to Data Communications and Networking	Tomasi, W.	Pearson Education, New Delhi, India, 2007 ISBN: 9788131709306 or latest edition

(b) Online Educational Resources:

- 1. https://onlinecourses.nptel.ac.in/noc21_me115/preview
- 2. http://www.studytonight.com/computer-network/tcp-ip-reference-model
- 3. http://www.studytonighty.com/computer-network/network-topology-types
- 4. http://www.tcpipguide.com/free/t_connectionorientedandconnectionlessprotocols.htm
- 5. https://www.vidyarthiplus.com/vp/attachment.php?aid=43525
- 6. http://www.myreadingroom.co.in/notes-and-studymaterial/68-dcn/719-different-line-coding-techniques.html
- 7. https://www.cambridgeinternational.org/Images/285023-topic-3.2.1-protocols-9608-.pdf
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. IP addressing Handbook
- 2. Lab Manuals
- 3. Network topology guide

Diplo	ma in Electrical Engineering	Semester- VI	SBTE, Bihar
A)	Course Code	: 2420603B(T2420603B/P242	20603B/S2420603B)
B)	Course Title	: Industrial Drives	
C)	Pre- requisite Course(s)	: Electrical Circuit & Network, P	ower Electronics, DC
		Machines & Transformer, AC	Vachines

:

D) Rationale

In this era of industrial automation in manufacturing and other sectors, the mechanical controls are largely replaced by power electronics devices and control for simplified operation, precise speed, torque and power control to match with the requirement of different types of loads to improve the process output. Each type of drive system offers unique advantages. In this context this course aims at acquainting the diploma students with the basic principles and applications of power electronics devices, fundamentals of electric drives, rectifier and chopper-controlled DC drives, AC drives and some advanced control techniques to control the speed of a given motor, so that they can operate and maintain the control circuits used in the field.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Apply the fundamentals of electric drives to vary the electrical characteristics of a given motor.
- **CO-2** Select appropriate speed control method for a given DC and AC motors.
- **CO-3** Control precisely the speed of a given DC motor using rectifier and chopper-controlled DC drive.
- **CO-4** Control precisely the speed of a given three- phase induction motor using different AC drive techniques.
- **CO-5** Control the speed of a given motor using advanced Control techniques.

F) Suggested Course Articulation Matrix (CAM):

Course Outcomes		Programme Specific Outcomes* (PSOs)							
(COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development d Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	1	1	-	-	-	3		
CO-2	3	1	1	-	-	-	3		
CO-3	3	3	3	2	2	1	2		
CO-4	3	3	3	2	2	1	2		
CO-5	3	2	3	2	2	1	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Co		Scheme of Study (Hours/Week)						
Code	Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)	
		L T						
2420603B	Industrial Drives	03	-	04	02	09	06	

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			Α	ssessment S	cheme (Mar	ks)		
		Theory Assessment Term W (TA) Self-Lear Assessm (TWA		Work& earning sment VA)	Lab Assessment (LA)		\+TWA+LA)	
Course Code	Course litle	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
2420603B	Industrial Drives	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self-Learning Assessment (Includes assessment related to student performance in assignments, seminar, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

• ETA & ELA are to be carried out at the end of the term/ semester.

• Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self-Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2420603B

Ma	jor Theory Session Outcomes (TSOs)	Units	Relevant
			COs
			Number(s)
TSO 1a.	Explain the need and significance of electric drives.	Unit-1.0 Fundamentals of Electric Drives	CO1
TSO 1b. TSO 1c.	Describe the fundamental building blocks and its function with the help of a block diagram. Write the fundamental torque equation of motor load system specifying each	 1.1. Need and significance of Electric Drives 1.2. Functional Block diagrams of an electric drives 1.3. Fundamental torque Equation 1.4. Multi-quadrant operation 	
	parameter.	 1.5. Components of Load torque 1.6. Nature and classification of Load torque 	
TSO 1d.	Describe briefly four quadrant operation in an electric drive with need labeled sketches.	1.7. Steady State Stability (derivation not required)	
TSO 1e.	Classify the different components of load torque.		
TSO 1f.	Identify stable and unstable region of operation in T- ω characteristics of a three-phase induction motor.		
TSO 2a.	Interpret the Characteristics of the given DC Motors.	Unit-2.0 Basics of DC and AC Motors	CO1, CO2
TSO 2b.	Describe briefly the methods for speed control of the given DC Motor.	2.1 DC Motors: Characteristics and speed control of Series, Shunt and Separately Excited DC	
TSO 2c.	Describe various Braking methods of a given DC motor.	 2.2 DC motor: Braking – Plugging, Rheostatic, and Regenerative 	
TSO 2d.	List different speed control methods of three phase induction motor.	2.3 3-phase induction Motor: Characteristics and speed control of Squirrel cage IM and	
TSO 2e.	Describe various Braking methods of a given three phase induction motor with the help of neat sketch.	Slip ring IM 2.4 3-phase induction Motor: Braking - Plugging, Rheostatic, and Regenerative.	
TSO 2f.	Explain various classes of motor duty.	2.5 Classes of motor duty 2.6 Determination of Motor Rating	
TSO 2g.	Calculate motor rating for various load application.		
TSO 3a.	Describe the working of the given type of single-phase SCR drives to control the speed of dc separately excited motor with the help of neat sketches.	Unit-3.0 DC Drives3.1 Single phase SCR Drives of DC separately excited motor:	CO1, CO2, CO3
TSO 3b.	Describe the working of the given type of three phase SCR drives to control the speed of dc separately excited motors with the help of neat sketches.	 Half wave converter Full wave converter Semi-converter Dual converter Three Phase SCR private of DC constraints 	
TSO 3c.	Control the speed of a DC series motor using converters.	 S.2 Infree Phase SCK Drives of DC separately excited motor: Half wave converter Full wave converter 	

Ma	ajor Theory Session Outcomes (TSOs)	Units	Relevant
			COs Number(s)
TSO 3d TSO 3e TSO 3f.	 Describe speed control techniques of separately excited DC motor using chopper. Describe speed control techniques of DC series motor using chopper. Draw the labeled sketch of functional blocks of chopper-controlled DC Drive in Solar and battery powered vehicles 	 Semi-converter 3.3 Rectifier control of DC Series motor. 3.4 Chopper Control of separately excited DC motor. 3.5 Chopper Control of DC series motor 3.6 Use of a chopper control drive in Solar and battery powered vehicles. 	
TSO 4a TSO 4b TSO 4c TSO 4d TSO 4d TSO 4e TSO 4f TSO 4g	Describe the need significance and working of soft starter for starting a three phase IM. Explain working principle of AC voltage controller. Explain working principle of cyclo- converter. Describe variable frequency control of 3- phase induction motor using cyclo- converter. Describe the working of Variable Frequency Drive (VFD) with the help of a neat labelled sketch mentioning the fundamental principle on which it works. Describe variable frequency control of 3- phase induction motor using VSI. Describe variable frequency control of 3- phase induction motor using CSI. Describe PWM technique in AC drives with	 Unit-4.0 AC Drives 4.1 Need, significance and working of soft starters 4.2 Stator voltage control using AC voltage controller 4.3 Cycloconverter 4.4 Variable Frequency Control (VFD) 4.5 Voltage Source Inverter Control 4.6 AC drives using PWM technique 4.7 Current Source Inverter Control 4.8 Basics of Slip power recovery 4.9 Rotor Resistance Control 	CO1, CO2, CO4
TSO 4i TSO 4j	the help of neat sketches Describe slip power recovery control of 3 phase induction motor using scherbius drive. Describe rotor resistance control of 3-phase slip ring induction motor using Converters.		
TSO 5a. TSO 5b. TSO 5c.	Describe the working of microprocessor- controlled AC/DC drive with the help of neat sketches. Describe the working of microcontroller- controlled AC/DC drive with the help of neat sketches. Describe the working of stepper motor using microcontroller.	 Unit-5.0 Advanced Techniques of Motor Control 5.1 AC/DC drive using microprocessor control 5.2 AC/DC drive using microcontroller control. 5.3 Stepper motor drives employing microcontroller 	CO5

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2420603B

Prac	ctical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1. LSO 1.2. LSO 1.3.	Control speed of DC shunt motor using single phase full wave converter Plot torque speed characteristics of the DC shunt motor. Plot torque- current characteristics of the DC shunt motor.	1.	Speed control of DC shunt motor using single phase full wave converter.	CO3, CO2
LSO 2.1.	Control speed of DC shunt motor using single phase semi converter.	2.	Speed control of DC shunt motor using single phase semi converter.	CO3, CO2
LSO 2.2.	Plot torque speed characteristics of the DC shunt motor.			
LSO 2.3.	Plot torque- current characteristics of the DC shunt motor.			
LSO 3.1.	Control speed of DC series motor using single phase full wave converter.	3.	Speed control of DC Series motor using single phase full wave converter.	CO3, CO2
LSO 3.2.	Plot torque speed characteristics of the DC series motor.			
LSO 3.3.	Plot torque- current characteristics of the DC series motor.			
LSO 4.1.	Control the speed of DC series motor using single phase semi converter.	4.	Speed control of DC Series motor using single phase semi converter.	CO3, CO2
LSO 4.2.	Plot torque speed characteristics of the DC series motor.			
LSO 4.3.	Plot torque- current characteristics of the DC series motor.			
LSO 5.1.	Control the speed of DC shunt motor by armature voltage control method using step down chopper.	5.	Speed control of DC Shunt motor by armature voltage control method using step down chopper.	CO3, CO2
LSO 5.2.	Plot torque- current characteristics of the DC shunt motor.			
LSO 5.3.	Plot torque- Speed characteristics of the DC shunt motor.			
LSO 6.1.	Control speed of DC series motor by armature voltage control method using step down chopper.	6.	Speed control of DC series motor by armature voltage control method using step down chopper.	CO3, CO2
LSO 6.2.	Plot torque speed characteristics of DC series motor.			
LSO 6.3.	Plot torque current characteristics of DC series motor.			
LSO 7.1.	Control the speed of three phase squirrel cage induction motor using Variable frequency Drive (VFD).	7.	Speed control of three phase squirrel cage induction motor using VFD.	CO4, CO2
LSO 7.2.	Plot torque speed characteristics of three phase squirrel cage induction motor			
LSO 7.3.	Plot torque slip characteristics of three phase squirrel cage induction motor			
LSO 8.1.	Control the speed of three phase wound rotor induction motor using rotor resistance control method.	8.	Speed control of three phase wound rotor induction motor using rotor resistance control method.	CO2, CO4,
LSO 8.2.	Plot torque slip characteristics of three phase Slip induction motor			

Practical/Lab Session Outcomes (LSOs)			Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 8.3.	Plot torque speed characteristics of three phase squirrel cage induction motor.			
LSO 9.1.	Control the speed of DC shunt motor drives using microcontroller.	9.	Perform Speed control of DC shunt motor drives using microcontroller	CO5, CO3, CO2
LSO 9.2.	Plot torque speed characteristics of DC shunt motor.			
LSO 9.3.	Plot torque- current characteristics of DC shunt motor.			
LSO 10.1.	Control the speed of DC shunt motor drives using microcontroller.	10.	Perform Speed control of squirrel cage IM drives using microcontroller.	CO5, CO4, CO2
LSO 10.2.	Plot torque speed characteristics of DC shunt motor.			
LSO 10.3.	Plot torque- current characteristics of DC shunt motor.			

Note: The entire above practical can be performed using MATLAB/SIMULINK software

- L) Suggested Term Work and Self-Learning: S2420603B Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a.** Assignments: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - i. A drive has the following parameters, T= 150-0.1N, N-m, Where N is the speed in rpm. Load torque T_I =100N-m. Initially the drive is operating in steady state. The characteristics of load torque are changed to T_I =100N-m. Calculate initial and final equilibrium speed.
 - ii. Explain the importance of steady state stability in Electric Drives.
 - iii. Compare between AC and DC drives
 - iv. A DC chopper is used to control the speed of a separately-excited DC motor. The DC supply voltage is 220 V, armature resistance $R_a = 0.2\Omega$ and motor constant $K_a \times \varphi = 0.08$ V/rpm. This motor drives a constant torque load requiring an average armature current of 25A. Determine (a) the range of speed control (b) the range of duty cycle D. assumed the motor current to be continuous.
 - v. Collect information about the ratings of commonly used power converters.
 - vi. Compare the various methods of speed control of DC motors.
 - vii. Describe variable frequency of induction motor is more efficient than stator voltage control.
 - viii. Why PWM technique is considered superior to other techniques? Also mention the types of PWM techniques along with diagrams.
 - ix. Compare CSI and VSI drives.
 - x. Explain the working principle of an elementary stepper motor.

b. Micro Projects:

- (i) Calculate the power rating of single-phase induction motor required for the academic building and hostel of your institute for water lifting.
- (ii) Build Step down chopper to control the speed of a small rating dc series motor.
- (iii) Build single phase full wave converters for speed control of a small rating DC shunt motor.
- (iv) Build an elementary single-phase inverter using MOSFET/IGBT and filter circuit components comprising inductor and capacitor.
- (v) Design drive mechanism of a battery-operated bicycle of rating 24V/36V/48V, 250W/500/W/1000W using Brushless DC motor.

- (vi) Build Step down chopper to control the speed of 3 phase squirrel cage IM using Rotor Resistance control.
- (vii) Simulate a single and three phase inverters for speed control of single phase / three IM using MATLAB SIMULINK.
- (viii) Prepare a case study on energy efficient electric drive which uses DOL/ Star delta/ Auto transformer/soft starters.
- (ix) Build a project to control the speed of existing motor in your lab using a Variable Frequency Drive.
- (x) Three phase Induction Motor Speed Control using microcontroller.
- (xi) Design drive mechanism for stepper motor.
- (xii) Design a control system for a solar tracker that adjusts the position of solar panels to maximize energy harvesting throughout the day.
- (xiii) Develop a speed control system for a DC motor using an Arduino microcontroller.
- (xiv) Implement a system for controlling the position of a servo motor using a microcontroller.

c. Other Activities:

- 1. Seminar Topics:
 - Power factor improvement in converters.
 - Energy efficient electric drives.
 - Conventional DC and AC Traction drives.
 - Fault diagnosis and maintenance strategies for industrial drives.
 - Regenerative braking systems in industrial drives.
 - Power Converters that can operate at higher temperatures and frequencies.
 - Intelligent Control Strategies for Power Converters
 - Three phase voltage regulation using SCR & Micro-Controller.
 - Speed control of single-phase induction motor using Cycloconverter.
 - Synchronous motor drives.
 - Scherbius and Kramer Drive
 - PWM inverter-based ac drive.
 - Efficient semiconductor converters.
 - Linear induction motor and its control
 - Converter circuit for Switched Reluctance motor

2. Visits:

- Visit nearby market to carry out a Survey and submit a report on available choppers, inverters, dual converters and cycloconverters for various drives used in our day-to-day life.
- Visit nearby Industry having advanced technique for controlling speed of DC/AC motor. Prepare report of visit with special comments of AC/DC motor and semiconductor switches used.
- Visit the nearby automation industry where drives are used and try to find out the type of drive, converter used and submit a report on it.
- Visit any one sugar/ paper/Steel/ textile mill or other to know the types of drives used in each stage of operation and submit a report on it.
- Make comparative table for various drives based on its application and maximum power ratings.
- 3. Self-Learning Topics:
 - Types of sensors and its applications in industrial drives.
 - IOT in industrial drives.
- Emerging technologies used in industrial drives.
- Machine learning application in industrial drives.
- Application of industrial drives in renewable energy system.
- Converters used in solar powered electrical vehicles.
- Sensor less control techniques for industrial motors.
- Cyber security in industrial drives.
- Robotics and industrial drives
- Brushless DC motor drives
- Multilevel Inverters.
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

		Course Evaluation Matrix										
	Theory Asses	sment (TA)**	Term W	ork Assessr	nent (TWA)	Lab Assessment (LA) [#]						
Cos	Progressive Theory Assessment (PTA) Class/Mid	End Theory Assessment (ETA)	Term	Work &Self Assessme	[:] Learning nt	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)					
	Sem Test		Assignments	Micro Projects	Other Activities*							
CO-1	20%	20%	20%	-	-	-	-					
CO-2	15%	15%	10%	10%	10%							
CO-3	25%	25%	30%	35%	35%	40%	40%					
CO-4	25%	25%	30%	35%	35%	40%	40%					
CO-5	15%	15%	10%	20%	20%	20%	20%					
Total Marks	30	70	20	20	10	20	30					
				50								

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

- The percentage given is approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total	ETA (Marks)		
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 fundamentals of Electric Drives	8	CO1	10	4	2	4
Unit-2.0 DC and AC Motors	7	CO2	12	4	2	2
Unit-3.0 DC Drives	14	CO2, CO3	18	5	4	10
Unit-4.0 AC Drives	14	CO2, CO4	18	5	4	10
Unit-5.0 . Advanced Techniques of Motor Control	5	CO2, CO3, CO4, CO5	12	2	4	8
Total	48	-	70	20	16	34

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Delevent	F	PLA/ELA	
C No	Laboration, Drestinal Titles	Relevant	Perfor	mance	Viva-
5. NO.	Laboratory Practical lities	COs	PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
1.	Speed control of DC shunt motor using single phase full wave converter.	CO3, CO2	50	40	10
2.	Speed control of DC shunt motor using single phase semi converter.	CO3, CO2	50	40	10
3.	Speed control of DC Series motor using single phase full wave converter.	CO3, CO2	50	40	10
4.	Speed control of DC Series motor using single phase semi converter.	CO3, CO2	50	40	10
5.	Speed control of DC Shunt motor by armature voltage control method using step down chopper.	CO3, CO2	50	40	10
6.	Speed control of DC series motor by armature voltage control method using step down chopper.	CO3, CO2	50	40	10
7.	Speed control of three phase squirrel cage induction motor using VFD.	CO4, CO2	50	40	10
8.	Speed control of three phase wound rotor induction motor using rotor resistance control method.	CO4, CO2	50	40	10
9.	Perform Speed control of DC shunt motor drives using microcontroller	CO5, CO3, CO2	50	40	10
10.	Perform Speed control of squirrel cage IM drives using microcontroller.	CO5, CO4, CO2	50	40	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved

Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Digital Multimeter	3 1/2-digit,0-800 volts,0-10 A, micro ammeter:0-100 micro ampere	All
2.	Dual channel CRO	25 MHZ with Isolation Transformer or power scope, attenuator probe for CRO	All
3.	DC Regulated Power Supply	0-30 V,0-2 A,0-300 V,0-10 A	5,6,
4.	Single phase AC supply	230V,10 A	1,2,3,4,7,8,9,10
5.	Experimental Thyristor trainer Kits	Choppers, Inverters, Dual Converters, Cycloconverter, Induction heating, Dielectric heating and connecting cords.	All
6.	Microcontroller based trainer kit	Microcontroller based Embedded system dc motor/three phase IM LDR sensor LED Series Interface	10,11
7.	Resistive load	Lamp-100W, Heater Coil-500W	All
8.	AC/DC Motor	DC Series motor (0.25HP to 1HP), Dc shunt motor (0.25HP to 1HP), DC separately excited motor (0.25HP to 1HP), Three Phase Induction Motor (Squirrel Cage and Slip ring Induction Motor) (0.25HP to 1HP)	All
9.	Resistive- inductive load	(Single phase fractional 1/4 HP,60W/75W Motor) as per requirement of the load	10
10.	Open-Source software (MATLAB, SCILAB)	Free/License version	All
11.	CASPOC Simulation software	-	All

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Fundamentals of Electrical Drives	G. K. Dubey	Narosa Publishing House, ISBN: 978- 81-7319-428-3
2.	Electric Drives	D. P. Kothari and Rakesh Singh Lodhi	WILEY India Edition ISBN:978-9384588120
3.	Control of DC and AC Drives	Srinivas Vemula and Ramaiah Veerlapati	Lap lambert academic publishing ISBN: 9783330053434
4.	Thyristor DC Drives	P.C SEN,	Wiley–Blackwell ISBN: 978-0471060703

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
5.	Fundamentals of Industrial Drive	B. N. Sarkar	PHI Learning Pvt. Ltd. ISBN:9788120344334
6.	Power Electronics	P. S. Bhimbra	Khanna Publishers ISBN:978-8174092793
7.	Power Electronics devices circuits and applications	M.H. Rashid	Pearson/Prentice Hall, 2004 ISBN:9780131011403

(b) Online Educational Resources:

- 1. https://nptel.ac.in/courses/108108077
- 2. https://archive.nptel.ac.in/courses/108/104/108104140/
- 3. https://nptel.ac.in/courses/108107128
- 4. https://archive.nptel.ac.in/courses/108/105/108105062/
- 5. https://en.wikibooks.org/wiki/Power_Electronics
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational resources before use by the students.

(c) Others:

- 1. Industrial Electronics Handbook Power Electronics And Motor Drives by Wilamowski Bogdan M And J David Irwin, Publisher- Bio-green Books
- 2. Suppliers Lab Manuals on electrical drives
- 3. Manufacturer's operating Manual of electrical drives

C) **Pre- requisite Course(s)** : Electrification of Building Complexes

: Basic Electrical Engineering, Switchgear and protection

D) Rationale

With the revolutionary changes in the building construction, advent of new building materials and electrical fittings and accessories there is an increase in demand for experts in electrification of residential, multistoried buildings and commercial complexes following all safety precautions. Studying this course will enable the diploma pass outs to acquire the knowledge and skill sets to plan, design, estimate and execute the electrification of modern residential, multistoried buildings and commercial complexes independently and professionally as per IE rules. This course is a job-oriented course and also there are ample chances for the pass outs to start their own business of electrification of building complexes, which is very profitable and growing business and requires very less investment.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of the following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/industry.

After completion of the course, the students will be able to-

- CO-1 Interpret symbols, plan and wiring diagrams of a given electrical installation.
- CO-2 Estimate the cost of electrification of the given residential building.
- CO-3 Estimate the cost of wiring installation of the given commercial complex and public building.
- CO-4 Design distribution system for Multistoried Buildings
- CO-5 Follow safe practices in a residential, multistoried building and commercial complex

F) Suggested Course Articulation Matrix (CAM):

Course	Programme Outcomes(POs)								ne Specific omes* Os)
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO-1	PSO-2
(COs)	Basic and	Proble	Design/	Engineering	Engineering	Project	Life		
	Discipline	m	Development	Tools	Practices for	Management	Long		
	Specific	Analysis	of Solutions		Society,		Learnin		
	Knowledge				Sustainability and		g		
					Environment				
CO-1	3	2	3	1	-	1	3		
CO-2	3	3	1	-	1	2	2		
CO-3	3	2	2	2	1	2	2		
CO-4	3	2	2	3	1	2	1		
CO-5	3	2	2	3	1	2	1		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Courses	Scheme of Study (Hours/Week)							
Code	Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	Т						
2420603C	Electrification of Building Complexes	03	-	04	02	09	06		

Legend:

- CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)
- LI: Laboratory Instruction (Includes experiments/practical performances/problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

- SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.
- C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)
- **Note:** TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			Α	ssessment S	cheme (Mai	·ks)		
		Theory Assessment (TA)		Term Work & Self-Learning Assessment		Lab Assessment (LA)		rwa+la)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	(AW External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+
2420603C	Electrification of Building complexes	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

Semester- VI

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2420603C

Maj	jor Theory Session Outcomes (TSOs)	Units	Relevant COs Numbor(s)
TCO 10	List different elements used in the siven	Unit 10 Flowents of Flootsification	Number(s)
150 Ia.	List different elements used in the given	Unit – 1.0 Elements of Electrification	01
TSO 1b TSO 1c. TSO 1d TSO 1e	 type of electrical installations. Interpret different electrical engineering drawings/symbols of the given electrical installation. Describe the criteria for selection of electrical accessories for the given applications. Describe the criteria for selection of earthing system as per site condition. State the tests to be performed before charging the new wiring/installation 	 Elements of Electrical installation and fittings Electrical Engineering Drawings: Symbols, Plans and wiring Diagrams. Electrical Accessories: Wires, Switch Board, Cable, Mains and Sub mains, circuit breakers (MCB, MCCB, ELCB, RCCB etc.). Earthing System (Pipe earthing, Plate earthing, Chemical earthing) Testing of wiring and installation Illumination requirements in residential, Commercial and public Building Economical illumination design 	
TSO 1f.	State the illumination requirements for	C C	
TSO 1g.	the economical illumination design of a given building. Describe the illumination design procedure for the given applications.		
TSO 2a	Describe the selection of wiring scheme for	Unit- 2.0 Electrification of Residential Buildings	CO1, CO2
TSO 2b TSO 2c TSO 2d TSO 2e TSO 2f TSO 2g	the given residential building. State the applicable norms and guidelines for the residential building. Prepare wiring layout for the given residential building Calculate number of circuits for the given load. Interpret the Schedule of Rates. Prepare estimate for the given electrical installation. Describe the testing procedure of new wiring and installations in a residential building.	 2.1 Type of wiring- Concealed, Surface. 2.2 Norms and guidelines for wiring and fittings. 2.3 Wiring layout of a residential building. 2.4 Calculation of total Electrical Loads. 2.5 Calculation of number of circuits. 2.6 Schedule of rates (SOR), Point Wiring System. 2.7 Estimation of material requirements. 2.8 Requirements of approval from electrical inspection department. 2.9 Testing of wiring installation and preparation of test report. 	
TSO 3a	Differentiate electrification of Residential,	Unit-3.0 Electrification of Commercial	CO2, CO3
TSO 3b TSO 3c	commercial and public building electrical Installations. State the applicable norms and guidelines for the Commercial and Public Installation State the Fundamental considerations for planning of an electrical installation system	 3.1 Commercial and Public Buildings 3.2 Residential, commercial and public building electrical Installations: Comparison 3.3 Norms and guidelines for wiring and installations. 	

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 3d Prepare wiring layout for the given	3.4 Fundamental considerations for planning of	Number(S)
Commercial and Public Installations	an electrical installation system	
TSO 3e Prepare the list of special requirements of	3.5 Wiring layout of a Commercial Complexes	
hotels, theaters, library and cultural halls	and Public Buildings	
etc. from electrification points of view	3.6 Special requirements of hotels, theaters,	
TSO 3f Use appropriate illumination scheme for	library and cultural halls etc. from	
interior applications	electrification points of view	
TSO 3g State the design factors considered for	3.7 Illumination scheme for Interior Applications.	
the illumination of Interior location of	3.8 Design considerations of illumination for	
Commercial and public buildings.	Commercial and Public buildings.	
ISO 3h Describe the various lighting arrangement	3.9 Different types of lighting arrangements	
for the given applications.	3.10 Requirements of approval from electrical	
ISO 31 Describe the testing procedure of new	Inspection department.	
wining and installations in a commercial	of test report	
TSO 4a Define Multistoried Buildings	Unit – 40 Distribution System for Multistoried	CO3 CO4
TSO 4b Describe the given methods of service	Buildings	203, 204
connection for the Multistoried Buildings	, , , , , , , , , , , , , , , , , , ,	
TSO 4c Design Distribution Panel, Bus bar and	4.1 Multistoried Buildings	
Rising Mains for the given multistoried	4.2 Different Methods of service connection	
buildings.	4.3 Underground service connection of	
TSO 4d Estimate the size of distribution cable and	multistoried buildings.	
mains wiring system for the Multistoried	4.4 Distribution panels and Bus bar system, Rising	
Buildings.	Mains: Design	
TSO 4e Identify the appropriate location for	4.5 Cables and Wiring system: Estimating and	
Mounting and Positioning of	Costing	
Switchboards, Distribution boards, main	4.6 Switchboards, Distribution boards, main	
switch	switch: Mounting arrangements and	
TSO 4f Select the relevant energy Metering	Positioning	
system for the given applications.	4.7 Meter connection-bindication of metering-	
	digital – meters for prevention of theft of	
	nower	
TSO 5a Appreciate the significance of safety rules	Unit – 5.0 Electrical Safety and IF Rules	CO2, CO3,
to be followed in a Multistoried building.		CO 4,
TSO 5b Describe the installation procedure of the	5.1 Importance of safety rules.	CO 5
given safety devices and systems in the	5.2 Safety precaution in electrical installation of	
multistoried buildings.	multistoried building.	
TSO 5c Describe the testing procedure of the	5.3 Safety devices in multistoried buildings	
given safety devices and systems in the	Fire Alarm System	
multistoried buildings	Smoke Detection System	
TSO 5d Apply the norms of the National Building	 Safety for Lifts and Escalators 	
Code and IE rules in the electrification of	Earthing System	
Multistoried building complexes.	Lightning Arrestors arrangements	
	Use of ELCB and MCBs/MCCBs in an	
	installation	
	Electronic safety locks at the entrance	
	• DG system	
	5.4 National Building Code	
	5.5 Indian Electricity Act.	1

		•=•=
Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
	5.6 IE rules	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2420603C

Prac	tical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1	Identify elements of electrical installations and fittings	1.	Identification of elements of electrical installations and fittings	CO1
LSO 2.1	Draw the plan and wiring diagram for a given lab Interpret the plan and wiring diagram	2.	Drawing of plan and wiring diagram for a given lab	CO1
LSO 3.1	Select the Electrical Accessories for the given electrical installation	3	Selection of Electrical Accessories	CO 1
LSO 4.1 LSO 4.2	Use Lux meter for measuring intensity of light Compare output of luxmeter with actual power consumed by the lights	4	Measurement of intensity of light using Lux meter and compare output w.r.t power consumed	CO 1
LSO 5.1	Design economical illumination system for the given building using relevant software	5	Design of economical illumination system for a given building using relevant software	CO 1
LSO 6.1	Draw wiring layout for a particular building as per the load requirement.	6	Drawing of the wiring layout of 2 BHK residential building.	CO1, CO2
LSO 7.1	Prepare estimate for the wiring and fitting of the given load conditions.	7	Wiring for the given load condition.	CO1, CO2
LSO 8.1	Test the given wiring installations.	8	Testing of wiring installation using relevant meters	CO1, CO2
LSO 9.1	Draw wirings Tube light wiring, Go down and Parallel loop wiring.	9	Tube light wiring, Go down wiring and Parallel loop wiring.	CO1, CO2
LSO 10.1	 Select appropriate wiring material for the given project Prepare the estimate of materials and accessories for the given project 	10	Selection of an appropriate wiring material and preparation of list of materials and accessories for given project	CO1, CO2
LSO 11.1	Draw the wiring of Stair case	11	Drawing of wiring of Stair case	CO1, CO2
LSO 12.1	Select the appropriate earthing system using measuring and testing instruments for a particular application	12	Selection of appropriate earthing system	CO1, CO2
LSO 13.1	Select the Fuse and MCB for the given load.	13	Selection of Fuse and MCB for a given application.	CO1, CO2
LSO 14.1	Draw a complete wiring diagram of the residential house using Autocad software	14	Wiring diagram of the residential house using Autocad software	CO1, CO2
LSO 15.1	Draw a complete wiring diagram, of any one of the commercial complexes	15	Draw a complete wiring diagram, of any one of the Commercial complexes. (Cinema, hotel, library, Cultural hall, hospital etc.	CO2, CO3

Practi	ical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 16.1	Determine the cost of electrical installation of any Commercial and Public Building	16	Calculating the load and estimate the cost of electrical installation of any Commercial and Public Building	CO2, CO3
LSO 17.1	Prepare a field visit report after observing electrical installation and wiring of any Commercial and Public Building	17	Observe the electrical installation of any Commercial and Public Building and prepare the field visit report	CO2, CO3
LSO 18.1	Determine the load for lift, escalators, air conditioning in Commercial and Public Building	18	Estimation of Load for lift, escalators, air conditioning in Commercial and Public Building	CO2, CO3
LSO 19.1	Interpret test report of an electrical installation of a Commercial and Public Building	19	Preparation of test report of an electrical installation of a Commercial and Public Building.	CO2, CO3
LSO 20.1	Design an economical illumination system for any Commercial and Public Building	20	Design of an economical illumination system for any Commercial and Public Building	CO 2, CO 3
LSO 21.1	Calculate the size of distribution panel, Bus bar and Rising Mains for any Multistoried Buildings	21	Calculation of size of distribution panel, Bus bar and Rising Mains for any Multistoried Buildings	CO2, CO3, CO4
LSO 22.1	Prepare report of Estimating and Costing of Cables and Wiring system for any Multistoried Buildings	22	Preparation of report of Estimating and Costing of Cables and Wiring system for any Multistoried Buildings	CO2, CO3, CO4
LSO 23.1	Identify the appropriate location for Mounting and Positioning of Switchboards, Distribution boards, main switch	23	Selection of appropriate location for Mounting and Positioning of Switchboards, Distribution boards, main switch	CO2, CO3, CO4
LSO 24.1	Use of Meter connection, bifurcation of metering-meters as per consumers demand	24	Using the Meter connection, bifurcation of metering-meters as per consumer's demand	CO2, CO3, CO4
LSO 25.1	Measure energy using digital energy meter	25	Energy measurement using digital Energy meters	CO2, CO3, CO4
LSO 26.1	Testing of safety Devices in electrical installation in a Commercial and Public Building	26	Testing of safety Devices in electrical installation in a Commercial and Public Building	CO1, CO2, CO3, CO4, CO5
LSO 27.1	Undertake mock drill for using fire extinguisher for safety against fire.	27	Mock drill for using fire extinguisher for safety against fire	CO5
LSO 28.1	Perform electrical tests for Commercial and Public Building as per IE	28	Perform electrical tests for commercial and high-rise buildings as per IE	CO1, CO2, CO3, CO4, CO5

L) Suggested Term Work and Self Learning: S2420603C Some sample suggested assignments, micro project and other activities are mentioned here for reference.

a. Assignments:

Some sample suggested assignments, micro project and other activities are mentioned here for reference.

Semester- VI

SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- Arrange lectures by 'A' class contractors engaged in electrification works of building complexes.
- Arrange a visit to a complex, multistory building under construction where electrification work is in progress.
- Show video/animation film to demonstrate the different types of wiring and installations
- Carry out a survey and prepare a report on different type of cables, their sizes and modern electrical accessories and fittings available in local market
- Use Flash/Animations to explain the working of different electrical safety devices.
- Give Mini projects (such as planning and estimating of electrification of given building complex) to students.

a. Assignments: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted Cos

1. Assignments on solving numerical:

Prepare a total estimation of wiring of a single room having size of 5 *4 m. The room is provided with two lamps and one fan. Each point has to be controlled by individual switch. No main switch is to be provided (Lamp – 60 W, Fan – 100 W)

- 2. Case studies
 - Comparative energy use of residential furnaces and heat pumps
 - study of the cost of electrifying a range of buildings—residential and commercial, new and existing
- 3. Analyze the standard specifications of various electrical accessories and fittings
- 4. Make comparative table of different types of wiring installations
- 5. Prepare a sample test report based on test carried out on an installation
- 6. Show video/animation film to demonstrate the different types of wiring and installations
- 7. Carry out a survey and prepare a report on different type of cables, their sizes and modern electrical accessories and fittings available in local market
- 8. Use Flash/Animations to explain the working of different electrical safety devices
- 9. Analyze the standard specifications of various electrical accessories and fittings.
- 10. Make a comparative table of different types of wiring installations.

c. Micro Projects:

- 1. Installation and commissioning of LED fixture-Calculate load current and illumination level for certain lighting scheme.
- 2. Develop staircase Light Control System for a 5-storey building
- 3. Prepare Tester Circuit for Cable & Wire
- 4. Design LED-based Auto Night Lamp
- 5. Install and commission LED fixtures and prepare report on it
- 6. Prepare a Case study for installed illumination scheme and try to draw polar curve
- 7. Develop a prototype for installation and commissioning of lighting structure

d. Other Activities:

- 1. Seminar Topics:
 - Policies supporting the building electrification and efficiencies
 - Clean electricity complements building electrification
 - Social benefits to building electrification and efficiency
 - Obstacles to electrification and efficiency
- 2. Visits:

- Visit to a complex, multistory building under construction where electrification work is in progress and submit a report mentioning following points
- Number of storeys
- Utility of buildings
- Requirement of electrical load
- List of equipment proposed to be installed
- Size of wire being used in wiring installation
 - Visit to see the electrification of large multistoried building or commercial building complex
- installed capacity of lift
- detailed specification of lift
- Wiring of lift
- Motors used in lift operation
- Sensors used in lift operation
- 3. Self-Learning Topics:
 - Power converters for building loads
 - Technological Advancements and Opportunities in Building Electrification
 - Building Electrification Supply Chain and Logistics Challenges
 - Electrification and energy efficiency in buildings: Policy implications and interactions
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix								
	Theory Asses	sment (TA)**	Term Wo	rk Assessm	ent (TWA)	Lab Assessment (LA) [#]			
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term W	/ork & Self Assessmen	Learning t	Progressive Lab Assessment	End Laboratory Assessment		
	Class/Mid		Assignments	Assignments Micro Other		(PLA)	(ELA)		
	Sem Test			Projects	Activities*				
CO-1	10%	10%	35%		-	15%	20%		
CO-2	35%	35%	25%		40%	45%	20%		
CO-3	25%	25%	15%	100 %	20%	10%	20%		
CO-4	20%	20%	15%		20%	20%	20%		
CO-5	10%	10%	10%		20%	10%	20%		
Total	30	70	20 20 10			20	30		
Marks				50					

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.
- N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

		-	
Unit Title and Number	Total		ETA (Marks)

Diploma in Electrical Engineering		Semester- VI			SBTE	, Bihar
	Classroom Instruction (CI) Hours	Relevant COs Number(s)	Total Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Elements of Electrification	6	CO1	10	3	3	4
Unit-2.0 Electrification of Residential Buildings	12	CO1, CO2	20	6	6	8
Unit-3.0 Electrification of Commercial Complexes and Public Buildings	12	CO2, CO3	16	4	4	8
Unit-4.0 Distribution System for Multistoried Buildings	12	CO2, CO3, CO4	14	4	4	6
Unit-5.0 Electrical Safety and IE Rules	6	CO2, CO3, CO 4 CO5	10	3	3	4
Total	48	-	70	20	20	30

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Polovant	F	PLA/ELA	
S.	Labourtow, Dupatical Titlas	Relevant	Perfor	mance	Viva-
No.	Laboratory Practical lities		PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
1.	Identification of elements of electrical installations and fittings	CO1	60	30	10
2.	Drawing of plan and wiring diagram for a given lab	CO1	60	30	10
3.	Selection of Electrical Accessories	CO1	50	40	10
4.	Measurement of intensity of light using Lux meter and compare output w.r.t power consumed	CO1	60	30	10
5.	Designing economical illumination systems for a given building using relevant software	CO1	50	40	10
6.	Drawing of the wiring layout of 2 BHK residential building	CO 1, CO 2	50	40	10
7.	Wiring for the given load condition.	CO 1, CO 2	60	30	10
8.	Testing of wiring installation using relevant meters	CO 1, CO 2	50	40	10
9.	Wirings of Tube light wiring, Go down wiring, Parallel loop wiring.	CO 1, CO 2	60	30	10
10.	Selection of an appropriate wiring and preparation of list of materials and accessories for given project	CO 1, CO 2	50	40	10
11.	Drawing the wiring of Stair case	CO 1, CO 2	40	50	10
12.	Selection of appropriate earthing system using measuring and testing instruments for particular application	CO 1, CO 2	60	30	10
13.	Selecting of Fuse and MCB for the given application	CO 1, CO 2	60	30	10
14.	Draw a complete wiring diagram of the residential house using Autocad software	CO 1, CO 2	60	30	10

		Delevent	F	PLA/ELA	
S.	Laboratory Drastical Titles	Relevant	Perfor	mance	Viva-
No.		Number(s)	PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
15.	Draw a complete wiring diagram, of any one of the Commercial complexes. (Cinema, hotel, library, Cultural hall, hospital etc.	CO 2, CO3	50	40	10
16.	Calculating the load and estimate the cost of electrical installation of any Commercial and Public Building	CO 2, CO3	50	40	10
17.	Observe the electrical installation of any Commercial and Public Building and prepare the field visit report	CO 2, CO 3	50	40	10
18.	Estimation of Load for lift, escalators, air conditioning in Commercial and Public Building	CO 2, CO 3	50	40	10
19.	Preparation of test report of an electrical installation of a Commercial and Public Building.	CO 2, CO 3	50	40	10
20.	Design of an economical illumination system for any Commercial and Public Building	CO 2, CO 3	50	40	10
21.	Calculation of size of distribution panel, Bus bar and Rising Mains for any Multistoried Buildings	CO 2, CO 3, CO 4	50	40	10
22.	Preparation of report of Estimating and Costing of Cables and Wiring system for any Multistoried Buildings	CO 2, CO 3, CO 4	50	40	10
23.	Selection of appropriate location for Mounting and Positioning of Switchboards, Distribution boards, main switch	CO 2, CO 3, CO 4	50	40	10
24.	Using the Meter connection, bifurcation of metering-meters as per consumer's demand	CO 2, CO 3, CO 4	60	30	10
25.	Energy measurement using digital Energy meters	CO 2, CO 3, CO 4	60	30	10
26.	Testing of safety Devices in electrical installation in a Commercial and Public Building	CO1, CO 2, CO 3, CO 4	60	30	10
27.	Mock drill for using fire extinguisher for safety against fire	CO 5	60	30	10
28.	Perform electrical tests for commercial and high-rise buildings as per IE	CO1, CO 2, CO3, CO4, CO 5	60	30	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

Semester- VI

			- , -
S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Digital Multimeter	DC ranges - 50 mV DC, 500 mV DC, 5 V DC, 50 V DC AC ranges - 50 mV RMS, 500 mV RMS, 5 V RMS, 30 V RMS Input AC frequencies - 40 Hz to 1 kHz	1,3,7,8,9,10,12
2.	Clip-on meter	Voltage measurement range (AC) max: 400A Voltage measurement range (AC) min: 2A Voltage measurement range (DC) max: 600V Voltage measurement range (D C) min: 2V Current measurement range (DC), max: 400A Current measurement range (DC), min: 2A Current resolution (AC): 1mA	1,3,7,8,9,10,12,15,19,22, 27
3.	Lux Meter	Resolution: 0.1 lux or 0.1 fc. Selection: lux / fc. Power: 9 V Battery. Dimension: 190 x 56 x 39 mm (approx)	4,5,21,11
4.	Wattmeter, Voltmeter, Digital Energy meter, Ammeter, Energy meter, Power Factor meter	For laboratory purpose	1,3,7,8,9,10,12,13,15,16, 19,20,21,22,24,25, 26,29
5.	MEGGER	Insulation Tester Type: Multifunction; Insulation Testing Voltage:50V, 100V, 250V, 500V, 1Kv; Insulation Testing Resistance:200Gohm;	3,7,8,9,10,12
7.	EARTH TESTER	Test current: 20Ω range,10mA AC RMS approx. 200Ω ranges,1mA AC RMS approx. 2000 Ω range,100 μ A AC RMS approx.	3,7,8,9,10,12
9.	Basic wiring tools - Pliers, Screw drivers and nut drivers, Wire strippers Utility Knife, fishing tools, Measuring devices, Labeling machines, Power drills and drivers, hammer/drills, Power saws	For laboratory purpose	All
	Fire extinguisher	All class (A, B, C, D)	28

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.			
1.	Electrical Design Estimating and Costing	Raina, K.B. and S.K.Bhattacharya,	New Age International Ltd., New Delhi, ISBN 978-81-224-0363-3
2.	Electrical Estimating and Costing	Allagappan, N. S. Ekambarram	New Delhi, ISBN-13: 9780074624784
3.	Electrical Estimating and Costing,	Surjit Singh	Dhanpat Rai and Co. New Delhi, ISBN: 1234567150995
4.	A Course in Electrical Installation Estimating and Costing	J B Gupta	S K Kataria and Sons, New Delhi, ISBN:978-93-5014-279-0
5.	Code of practice for electrical wiring installation	-	Bureau of Indian Standard, IS: 732-1989,
6.	National Electrical Code 2010	-	Bureau of Indian Standard, SP 30
7	National Lighting Codes 2010	-	Bureau of Indian Standard, SP 72
8	National building code of India group 1 and Group 4	Bureau of Indian standard	New Delhi, book no 1604, latest edition

(b) Online Educational Resources:

- 1. www.electricaltechnology.org/2013/09/electrical-wiring.html
- 2. www.nptel.iitm.ac.in
- 3. http://www.bee.com/
- 4. http://www.powermin.nic.in/
- 5. http://www.teriin.org/
- 6. http://www.edumedia-sciences.
- 7. http://electrical-engineering-portal.com/
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational resources before use by the students.

(c) Others:

- 1. Learning Packages
- 2. Lab Manuals

A)Course Code: 2400604B(T2400604B/P2400604B/S2400604B)B)Course Title: Artificial Intelligence (Advanced)C)Pre- requisite Course(s): Artificial Intelligence (Basic)

•

D) Rationale

In Artificial Intelligence (Basic) course, students have learned the basics for Artificial Intelligence problem solving techniques, data analytics and articulates the different dimensions of these areas. This Artificial Intelligence (Advanced) course offers the students the comprehension of Machine learning which is a subset of artificial intelligence in the field of computer. The course also exposes students to Tens or flow a Python-based open source library for numerical computation used in machine learning and developing neural networks. After completing the course students will be able to implement various techniques used in machine learning and neural networks using open source tools.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Elaborate the use of Machine learning in Artificial Intelligence.
- **CO-2** Implement various supervised and unsupervised learning models and methods.
- **CO-3** Illustrate Artificial neural networks and its applications.
- **CO-4** Implement various Neural network models and Learning Methods.
- **CO-5** Solve machine learning and artificial neural network problems using Tens or flow.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/De velopment of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainabilityand Environment	PO-6 Project Manageme nt	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	-	2	2	-	-	-	1		
CO-2	3	3	3	3	-	-	2		
CO-3	-	3	3	3	-	-	2		
CO-4	3	1	3	3	-	-	2		
CO-5	3	3	3	3	-	-	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

*: PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)						
Code	Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credit (C)	
		LT		. ,	, ,		.,	
2400604B	Artificial intelligence (Advanced)	03	-	04	02	09	06	

Legend:

Semester- VI

- CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)
- LI: Laboratory Instruction (Includes experiments/practical performances/ problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCS, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

		Assessment Scheme (Marks)							
		Theory Assessment (TA)		Term W Self-Learı Assessme	/ork & ning ent (TWA)	Lab Asse (L	essment A)	(A+LA)	
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TV	
2400604B	Artificial Intelligence (Advanced)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400604B

Major Theory Session Outcomes (TSOs)	Units	Relevant Cos Number
		(s)
TSO 1a. Describe the basic terminology of Machine	Unit – 1.0: Introduction to machine learning	CO-1
TSO 1b. Explain the concept of dataset and ways	Concept of Machine Learning, Define	
to handle them	Learning, Learn the Network, Evaluate the	
TSO 1c. illustrate the process of dataset division	Network, datasets and ways to handle them,	
TSO 1d. Explain process involved in machine	Feature sets, Dataset division: test, train and	
learning	validation sets, cross validation. Applications	
	of Machine Learning, processes involved in	
TSO 20. Identify the enteren or class of a	Machine Learning	<u> </u>
150 2a. Identify the category of class of a	Unit 2.0: Supervised and Unsupervised Learning	CO-2
algorithm	Supervised Learning:	
TSO 2b. Use Linear regression for predictive	Introduction to Supervised Learning, K-	
analysis	Nearest Neighbor, Linear Regression, Logistic	
TSO 2c. Predict the categorical dependent	Regression, Support Vector Machine (SVM),	
variable using Logistic Regression	Evaluation Measures: confusion matrix,	
TSO 2d. Use SVM for classification problems in	precision, precision and recall, ROC-Curve	
Machine Learning	(Receiver Operating Characteristic curve)	
TSO 2e. determine the performance of the		
classification models	Unsupervised Learning:	
ISO 2f. evaluate the performance of the	Introduction to Unsupervised Learning,	
classification model using ROC-	Clustering: Hierarchical Agglomorative	
TSO 2g Explain characteristics of	Clustering and Divisive clustering. Partitional	
Unsupervised learning.	Clustering - K-means clustering, Expectation-	
TSO 2h. Explain different clustering methods	Maximization (EM) Algorithm	
TSO 2i. Implement K-means clustering		
algorithm to group the unlabeled		
dataset		
TSO 3a. Explain Structure and working of Biological Neural Network.	Unit 3.0: Introduction to Neural Networks	CO-3
TSO 3b. differentiate between Artificial Neural	Structure and working of Biological Neural	
Network and Biological Neural Network	Network, Fundamentals of Artificial Neural	
TSO 3c. State key historical points in development of	Networks & Applications, Characteristics of	
ANN	Artificial Neural Networks, History of neural	
TSO 3d. Explain the architecture of an artificial	network research, characteristics of neural	
neural network	networks terminology.	
TSO 4a. Use neuron McCulloch – Pitts model in	Unit 4.0: Neural networks models and Learning	CO-4
designing logical operations	Methods	
TSO 4b. Apply Rosenblatt's Perceptron to solve		
linear classification problems	Models of neuron McCulloch – Pitts model,	
TSO 4c. Implement Adaptive Linear Neuron (Adaline)	Rosenblatt's Perceptron, Adaline model, Basic	
training algorithm in neural network	architecture, Multilaver Neural Networks	
algorithm	learning Methods Backpronagation Counter	
TSO 4e. Use ART (Adaptive Resonance Theory)	propagation, Adaptive Resonance Theory	
learning model	(ART), Associative memories, BAM.	
TSO 4f: Implement Bidirectional Associative Memory		
(BAM) model in Artificial Neural Network		
TSO 5a. Illustrate the features of Tens or flow	Unit-5.0 Tensor Flow	CO-5
TSO 5b. Manipulate tensors	footures of TonsorFlow, Tonsor Data	
TSO 5c. Explain features of Tens or Board	structure- Rank shane type one dimension	
visualization	and two-dimension tensor. Tensor handling	
ISO 5d Explain the concept and features of Tens or		

Major Theory Session Outcomes (TSOs)	Units	Relevant Cos Number (s)
flow playground	and manipulations, Tensor board visualization- symbols Tensors, Variables, Automatic differentiation, Graphs and tf.function, modules layers and models, training loops, features of Tens or flow playground- data ,the ration of train and test data, features, hidden layers, Epoch, learning rate, activation function, regularization, problem type	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400604B

Drastical / ch Session Outcomes (150s)	Relevant
Laboratory Experiment/Practical Titles	COs
No.	Number(s)
LSO 1.1 Implement data 1 Write a program to implement k-Nearest	CO-2
classification algorithms Neighbour algorithm to classify the iris data set.	
Print both correct and wrong predictions. Python	
ML library classes can be used for this problem.	
LSO 2.1 Implement Machine learning 2 (a) Implement SVM for Iris Dataset- download the	co 2
algorithms dataset from	CO-2
LSO 2.2 Evaluate the performance of (https://gist.github.com/netj/8836201) classification model	
(b) Find confusion matrix and evaluation matrix for	
Hint: SVM model can be constructed using sklearn	
import pandas as nd	
from sklearn sym import SVC	
from sklearn model selection import	
train test split	
from sklearn metrics import confusion matrix	
from sklearn.metrics import classification repo	t
from sklearn.metrics import accuracy score	
1. Read the csv Iris dataset file	
2. Condition the data	
3. Condition the training and Testing data	
4. Construct the Linear model	
5. Test the model with Linear kernel	
6. Prepare confusion matrix	
7. prepare Classification Report	
LSO 3.1 Perform clustering 3 a) Explore k-means algorithm for the small sample	
operations using k-means dataset.	CO-2
algorithm b) Explore k-means algorithm for Iris Dataset	
LSO 4.1 Perform clustering 4 Apply EM algorithm to cluster a set of data stored in a	1
operations using EM .CSV file. Use the same data set for clustering using k	CO-2
algorithm Means algorithm. Compare the results of these two	
algorithms and comment on the quality of clustering.	
You can add Python ML library classes/API in the	
program.	
LSO 5.1 Build artificial neural network 5 Build an Artificial Neural Network by implementing th	e CO-4
LSU 5.2 Test artificial neural network Backpropagation algorithm and test the same using	

Practical/Lab SessionOutcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 6.1 Detect features or business intelligence in the input data using perceptron	6	Implement the perceptron algorithm from scratch in python.	CO-4
LSO 7.1 Use Tensors for given problems	7	Write a programme to implement two dimension and three-dimension Tensor.	CO5
LSO 8.1 Use basic features for tensor handling and manipulations	8	Write a programme to add and multiply two 4x4 matrix, you can Import "tens or flow" and "numpy".	CO5
LSO 9.1 Test artificial intelligence (AI) algorithms through the use of Google's TensorFlow machine learning libraries.	9	Solve a classification problem on the Tens or flow playground. Hint: refer https://www.educba.com/tensorflow- playground/	CO5
LSO 10.1 Implement artificial intelligence (AI) algorithms through the use of Google's TensorFlow machine learning libraries LSO 10.2 perform predictive analysis using linear regression	10	Implement algorithm for linear regression in tens or flow	CO5, CO2

- L) Suggested Term Work and Self Learning: S2400604B Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

Use python programming for the solutions of Microproject problems

- 1. (a) Create a Bar plot to get the frequency of the three species of the Iris data.
 - (b) Create a Pie plot to get the frequency of the three species of the Iris data.
 - (c) Write a Python program to create a graph to find relationship between the sepal length and width.
- (a) Write a Python program to split the iris dataset into its attributes (X) and labels (y). The X variable contains the first four columns (i.e. attributes) and y contains the labels of the dataset.

(b) Write a Python program using Scikit-learn to split the iris dataset into 70% train data and 30% test data. Out of total 150 records, the training set will contain 120 records and the test set contains 30 of those records. Print both datasets.

3. Conduct performance analysis of Classification Algorithms (any 2) on a specific dataset.

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be assessed to calculate CO attainment.

	Course Evaluation Matrix									
	Theory Asses	sment (TA)**	Term Work Assessment (TWA)			Lab Assessment (LA) [#]				
COs	Progressive Theory Assessment (PTA)	End Theory Assessme nt(ETA)	Term Woi	Term Work & Self-Learning Assessment			m Work & Self-Learning Assessment		Progressive Lab Assessment	End Laboratory Assessment
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)			
	Sem Test			Projects	Activities*					
CO-1	20%	15%	30%	20%	30%					
CO-2	10%	25%	20%	20%	20%	30%	33%			
CO-3	30%	25%	30%	20%	20%					
CO-4	20%	20%	20%	20%	30%	30%	33%			
CO-5	20%	15%	10%	20%		40%	34%			
Total	30	70	20 20 10		20	30				
Marks				50		1				

Legend:

: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

: Mentioned under point- (N)

: Mentioned under point- (O)

Note:

**

• The percentage given are approximate

• In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.

• For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total	ETA (Marks)			
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0. Introduction to Machine Learning	08	CO1	11	5	4	2	
Unit-2.0. Supervised and Unsupervised Learning	10	CO2	18	5	6	7	
Unit-3.0. Introduction to Neural Networks	10	CO3	17	5	7	5	
Unit-4.0. Neural Networks models and Learning Methods	10	CO4	14	3	3	8	
Unit-5.0. Tensor Flow	10	CO5	10	2	6	2	
Total Marks	48		70	20	26	24	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

c	Laboratory Practical Titles	Relevant	Perforr	nance	Viva-
S. No.		Number(s)	PRA* (%)	PDA** (%)	Voce (%)
1.	Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set. Print both correct and wrong predictions. Python ML library classes can be used for this problem.	CO-2	-	90	10
2.	 (a) Implement SVM for Iris Dataset- download the dataset from (https://gist.github.com/netj/8836201) (b) Find confusion matrix and evaluation matrix for SVM 	CO-2	-	90	10
3.	 a) Explore k-means algorithm for the small sample dataset. b) Explore k-means algorithm for Iris Dataset 	CO-2	20	70	10
4.	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Python ML library classes/API in the program.	CO-2	-	90	10
5.	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.	CO-4	10	80	10
6.	Implement the perceptron algorithm from scratch in python.	CO-4	10	80	10
7.	Write a programme to implement two dimension and three- dimension Tensor.	CO-5	-	90	10
8.	Write a programme to add and multiply two 4x4 matrix, you can Import "tens or flow" and "numpy".	CO-5	-	90	10
9.	Solve a classification problem on the Tens or flow playground.	CO-5	20	70	10
10.	Implement algorithm for linear regression in tens or flow	CO-2, CO-5	10	80	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

- **Note:** This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to beprepared by the course teacher for each experiment/practical to assess the student performance.
- P) Suggested Instructional/Implementation Strategies: Different Instructional/ ImplementationStrategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Group Discussion, Portfolio Based Learning, Live Demonstrations in Classrooms, Lab, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Computer Systems	Desktop Computers with i3 processor, 16 GB RAM, 512 GBHDD	S. No. 1 to 10
2.	Online Python IDE	https://www.online-python.com/	S. No. 1 to 10

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
3.	Jupyter Notebook	Download from https://jupyter.org/	S. No. 1 to 10
4.	Pip Python package manager	Download Pip 22.3 From https://pypi.org/project/pip/	S. No. 1 to 10
5.	Google colab	https://colab.research.google.com/github/tensorflow/docs/blo b/master/site/en/tutorials/quickstart/beginner.ipynb#scrollTo= DUNzJc4jTj6G	S. No. 1 to 10
6.	Various modules, Libraries and Packages	Tens or flow, NumPy, Pandas, package	S. No. 1 to 10

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Machine Learning using Python	Manaranjan Pradhan, U Dinesh Kumar	Wiley, ISBN-10: 8126579900 ISBN-13: 978-8126579907
2.	Introduction to Machine Learning	Jeeva Jose	Khanna Book Publishing Co. (P) ltd, 2020. ISBN-10: 9389139066 ISBN-13: 978-9389139068
3.	Machine Learning for Dummies	John Paul Mueller and Luca Massaron, For Dummies,	For Dummies; 2nd edition, ISBN-10: 1119724015 ISBN-13: 978-1119724018
4.	Machine Learning	Rajeev Chopra	Khanna Book Publishing Co., 2021 ISBN-10: 9789386173423 ISBN-13: 978-9386173423
6.	Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python	Pramod Singh, Avinash manure	Apress, 978-1484255605 ISBN-10: 1484255607 ISBN-13: 978-1484255605

(b) Online Educational Resources:

- 1. NPTEL Course: Introduction to Machine Learning, Prof. Balaraman Ravindran, IIT Madras
- 2. https://www.tensorflow.org/resources/learn-ml
- 3. https://www.tutorialspoint.com/tensorflow/index.htm
- 4. https://www.javatpoint.com/tensorflow
- 5. https://developers.google.com/machine-learning/crash-course/exercises
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested OER, before use by the students.

(c) Others:

Data Source:

- https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/
- https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
- https://www.kaggle.com/arshid/iris-flower-dataset
- https://www.kaggle.com/rohankayan/years-of-experience-and-salary-dataset

- A) Course Code
- B) Course Title
- C) Pre- requisite Course(s)

: 2400604C(T2400604C/P2400604C/S2400604C)

- : Internet of Things (Advanced)
-) : IoT (Basics), Computer Networks

D) Rationale

The rise and rise of IoT technologies is redefining business opportunities and process. This has led to a growing need to learn advance skills to remain competitive in the market. Put together, these are a potent combination of technologies that will dictate how our future is written, which is a strong indicator of rewarding job opportunities in those domains. Introduction of the Advanced IoT follows a rigorous curriculum which blends the academic excellence and industry-relevant applications.

This course will be exposed to a breadth of skills which will help students to become multi-faceted software engineers with a deeper understanding of these modern technologies, their applications, and interdependence.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Use basic Python features in Programming.
- **CO-2** Use advance Python features in Programming.
- **CO-3** Explain features of Cloud and IoT data storage on it.
- **CO-4** Explain IoT Networking and its application.
- **CO-5** Develop IoT App for the given problem

F) Suggested Course Articulation Matrix (CAM):

Course	Programme Outcomes (POs)								Programme Specific Outcomes* (PSOs)	
Outcomes	PO-1	PO-2 PO-3 PO-4 PO-5 PO-6 PO-7				PSO-1	PSO-2			
(COs)	Basic and	Problem	Design/Devel	Engineering	Engineering	Project	Life Long			
	Discipline	Analysis	opment of	Tools	Practices for Society,	Management	Learning			
	Specific		Solutions		Sustainability and					
	Knowledge				Environment					
CO-1	3	3	2	2	-	2	-			
CO-2	3	3	2	2	-	2	-			
CO-3	1	-	3	2	2	2	2			
CO-4	1	-	2	3	-	2	2			
CO-5	3	3	3	2	2	3	3			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

* PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)					
Code	Title	Class Instru (C	room uction CI)	Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)
		L	Т				
2400604C	loT (Advanced)	03	-	04	02	09	06

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances/ problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

- TW: Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)
- SL: Self Learning, MOOCS, spoken tutorials, Online educational resources etc.
- C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)
- **Note:** TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			Assessment Scheme (Marks)						
U		Theory As (T	ssessment A)	Term Wo Learning A (TV	rk & Self- ssessment VA)	Lab Asse (L	essment A)	WA+LA)	
Course Cod	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+T	
2400604C	loT Advanced)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J)

Theory Session Outcomes (TSOs) and Units: T2400604C

Major Theory Session Outcomes (TSOs)	Units	Relevant COs
TEO 1 a Write the store to install Duthen	Unit 1 0 Puthon Project	Number(s)
 TSO.1. a. Write the steps to instan Python. TSO.1. b. Explain given types of variables in python. TSO.1. c. Explain use and importance of Tuple, Dictionary, operators in python TSO.1. d. Explain use of array in python. TSO.1. e. Explain use of 2-Dimensional Array in python TSO.1. f Explain uses of given type of Conditional statement in python. 	 Installation of Python Variables, Print () function, Escape character sequence and run python Program Python Tuple, Dictionary, operators Python arrays, create, reverse and append data into it. Python 2 Dimensional arrays. Python Conditional statement. 	5
 TSO.2. a. Explain uses of given type of do & while loops in python TSO.2. b. Explain working of break, continue and pass statement in python TSO.2. c. Write the benefits of using OOP methodology in python. TSO.2. d. Explain given type of string operation related to python. TSO.2. e. Explain given function in python 	 Unit 2.0 Python Advance: - 2.1 Python Do & while loops 2.2 Python break, continue, pass statements 2.3 Python OOPs Class, Object, Inheritance and Constructor 2.4 Python Strings Replace, Join, Split, Reverse, Uppercase, Lowercase, count, find, split and length 2.5 Python Functions, Built-in functions and user defined functions 2.6 Lambda function and user 	CO-1 and CO5
TSO.2. f Explain use of Lambda function in python.	2.6 Lambda function and uses	
 TSO.3. a. Differentiate between Cloud and IoT cloud. TSO.3. b. Explain features of Cloud in IoT environment TSO.3. c. List features of various types of Cloud TSO.3. d. List features of cloud services like SaaS, PaaS and IaaS TSO.3. f List advantages of cloud data storage. TSO.3. g Explain Arduino architecture and its applications. TSO.3.h Explain Raspberry pi architecture and its applications. 	 Unit-3.0 Cloud Features: - 3.1 Cloud computing and IoT cloud 3.2 Benefits of cloud in IoT 3.3 Types of Cloud public, private and hybrid 3.4 Cloud services like SaaS, PaaS and IaaS 3.5 Cloud connectivity and Data storage on Cloud. 3.6 Arduino: Architecture, Programming, and Applications 3.7 Raspberry Pi Architecture, Programming, and Application basic level for IoT applications 	CO-1, CO-2 and CO-5
 TSO.4. a. Explain wired network TSO.4. b. Explain short range wireless network TSO.4. c. Explain M2M communication TSO.4. d. Explain various generation of wireless network TSO.4. e. Explain the importance of LWPAN in IoT TSO.4. f Differentiate between SigFox & LoRaWAN TSO.4. g Explain use of NB-IOT (Narrow Band IOT) TSO.4.h Create heterogenous network using RFID. 	 Unit.4.0 IoT Networking and Application: - 4.1 Wired and short-range wireless network 4.2 M2M – 2G, 3G, 4G & 5G networks 4.3 LPWAN – Low Power Wide Area Networks 4.4 SigFox & LoRaWAN. 4.5 NB-IOT (Narrow Band IOT) 4.6 RFID and Bar code basics- Components of an RFID system-Data -Tags-Antennas- Connectors- Cables-Readers- encoder/ printers for smart labels-Controllers software 4.7 RFID advantages over Bar codes. 	CO-1 and CO- 4
TSO.5. a. Identify suitable framework for IoT app developmentTSO.5. b. Identify various stages of selected appTSO.5. c. Develop the app.	Unit. 5.0 IoT App Development: - 5.1 Framework selection for IoT app development 5.2 Identify stages of app to be developed. 5.3 Develop, Implement, and Deploy the App 5.4 Testing and Integration	CO-4 and CO- 5

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO.5. d. Implement and deploy the app	5.5 Maintain and improve	
TSO.5. e Maintain and improve the app based on the feedback		

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400604C

c		Relevant
S. No	Laboratory Experiment/Practical Titles	COs
10.		Number(s)
	1.1 Install given version of Python on the	CO-1
1.	computer system.	
	1.2 Prepare a python program using print()	
	function and run it.	
	1.3 Access given value from the tuple	
	dict	
	1.5 Write a Python program to create an	
	array of 5 integers and display the array	
	items. Access individual element	
	through indexes	
	1.6 Write a Python program which takes	
	two digits m (row) and n (column) as	
	input and generates a two-dimensional	
	array.	
	1.7 Write a python program to check	
	whether person is eligible for voting or	
	1.8 Write a python program to check	
	whether the entered number is even or	
	odd.	
	1.9 Write a python program to check	
	whether entered number is divisible by	
	another entered number.	
	1.10 Write a python program to display	
	"Yes" is entered number is divisible by 5	
	otherwise display "No"	
_	2.1 Prepare a python program which can	CO-2
2.	print first 10 even and odd numbers	
	using while statement	
	first 10 integers and its square using	
	while/for loop	
	2.3 Write a python program which can print	
	sum of first 10 natural numbers using	
	while/for loop.	
	2.4 Write a python program which can	
	identify the prime number between the	
	range given using while/for loop.	
	2.5 Consider a situation where you want to	
	iterate over a string and want to print	
	is encountered. It is specified that you	
	have to do this using loop and only one	
	loop is allowed to use.	
	S. No. 1.	 S. No. Laboratory Experiment/Practical Titles 1.1 Install given version of Python on the computer system. 1.2 Prepare a python program using print() function and run it. 1.3 Access given value from the tuple 1.4 Print the given value of key from the dict. 1.5 Write a Python program to create an array of 5 integers and display the array items. Access individual element through indexes 1.6 Write a Python program which takes two digits m (row) and n (column) as input and generates a two-dimensional array. 1.7 Write a python program to check whether person is eligible for voting or not. (accept age from the user) 1.8 Write a python program to check whether the entered number is even or odd. 1.9 Write a python program to check whether entered number is divisible by another entered number is divisible by another entered number. 1.10 Write a python program to display "Yes" is entered number is divisible by another entered number. 2.1 Prepare a python program which can print first 10 even and odd numbers using while statement 2.2 Write a python program which can print first 10 natural numbers using while/for loop. 2.3 Write a python program which can print apython program which can print first 10 natural numbers using while/for loop. 2.4 Write a python program which can identify the prime number between the range given using while/for loop. 2.4 Write a python program which can identify the prime number between the range given using while/for loop. 2.4 Write a python program which can identify the prime number between the range given using while/for loop. 2.5 Consider a struation where you want to iterate over a struation where you want to iterate over a struation where you want to iterate over a struation where you want to print all the characters until a letter 'e' or 's' is encountered. It is specified that you have to do this using loop and only on

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs
		 2.6 Consider the situation when you need to write a program which prints the number from 1 to 10 and but not 6. It is specified that you have to do this using loop and only one loop is allowed to use. 2.7 Create a Class with instance attributes 2.8 Create a Vehicle class without any variables and methods 2.9 Write a Python function to find the Max of three numbers. 2.10 Write a Python program to reverse a string. 	Number(s)
LSO 3.1Signup for free cloud storageLSO 3.2Store data into cloud and retrieve it.	3.	3.1 Create a free cloud account3.2 Store data on cloud and retrieve it	CO-3
LSO 4.1 Design various types of network cables LSO 4.2 Connect computer in LAN. LSO 4.3 Connect devices using wireless network LSO 4.4 Connect machine with machine LSO 4.5 Connect devices using IEEE 802 LSO 4.6 Connect devices using LPWAN LSO 4.7 Connect devices using RFID	4	 4.1 Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool. 4.2 Connect the computers in Local Area Network 4.3 Connect 2 or more devices using Bluetooth 4.4 Connect 2 or more devices using infrared 4.5 Connect 2 more machine using m2m 4.6 Connect 2 or more different devices using access point 4.7 Connect 2 devices using LPWAN (Smart Meter) 4.8 Connect 2 or more devices using RFID 	CO-4
LSO 5.1 Develop a IoT app LSO 5.2 Develop IoT applications using smartphones.	5.	 5.1 Identify a problem and develop an app 5.2 Building a temperature monitoring system using sensors and Smartphone 	CO-5

- L) Suggested Term Work and Self Learning: S2400604C Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Prepare a report on Python programming language.
- 2. Develop a small software in python to solve a IoT data analysis.
- 3. Create a id on free cloud storage and share data on it for others.
- 4. Create a heterogenous network and connect different dives.
- 5. Create a an IoT app for the identified problem

c. Other Activities:

- 1. Seminar Topics: "Future of wireless network."
- 2. "Smart electricity billing ", "Cloud computing and IoT"

- 3. Visit to industry for IoT implementation in industrial process.
- 4. Reading RFID cards using 8051- RFID in the supply chain- Vehicles parking using RFID- library management system- electronic toll payment- smart shipping containers fleet monitoring and management.
- 5. Building IoT Applications like pressure, air quality, temperature and motion detector using Arduino and raspberry-pi Universal boards.
- 6. Surveys of market for availability of various types of network devices and its pricing.
- 7. Product Development: Development of projects for real life problem solution app.
- 8. Software Development: Using Python

d. Self-Learning Topics:

- 1. Deeper knowledge in Python features
- 2. Network devices and its capabilities
- 3. Advantages of IoT implementations
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

			Co	Course Evaluation Matrix				
	Theory Asses	sment (TA)**	Term W	Term Work Assessment (TWA)			ment (LA) [#]	
Progressive End Theory Theory Assessment Assessment Term Work & Self-Learning Assessment Assessment (ETA)			Progressive Lab Assessment	End Laboratory Assessment				
	Class/Mid		Assignments	Micro	Other Activities*	(PLA)	(ELA)	
	Sem Test			Projects				
CO-1	10%	10%	20%		33%	10%	20%	
CO-2	15%	10%	20%		33%	15%	20%	
CO-3	30%	30%	20%		34%	15%	20%	
CO-4	20%	30%	20%	50%		30%	20%	
CO-5	25%	20%	20%	50%		30%	20%	
Total	30	70	20	20	10	20	30	
Marks				50	•			

Legend:

*: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.
- **N)** Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total	ETA (Marks)		
	Classroom COs Instruction Number (CI) (s) Hours		Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Python Basics	5	C01	7	2	2	3
Unit-2.0 Python Advance	5	Co1, CO2	7	2	2	3
Unit-3.0 Cloud Features	14	CO3	21	8	8	5

Diploma in Electrical Engineering

Semester- VI

SBTE, Bihar

Unit-4.0 Networking and Application	14	CO4, CO3	21	5	7	9
Unit-5.0 IoT Applications	10	CO5, CO3 and CO4	14	3	6	5
Total Marks	48		70	20	25	25

 Note:
 Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

S.	Laboratory, Depation Littles	Relevant COs	Perfo	rmance	Viva-
No.	Laboratory Practical lities	Number(s)	PRA*	PDA**	Voce
			(%)	(%)	(%)
1.	Install given version of Python the computer system.	CO-1	70	20	10
2.	Prepare a python program using print() function and run it.	CO-1	60	30	10
3.	Access given value from the tuple	CO-1	60	30	10
4.	Print the given value of key from the dict.	CO-1	60	30	10
5.	Write a Python program to create an array of 5 integers and display the array items. Access individual element through indexes	CO-1	60	30	10
6.	Write a Python program which takes two digits m (row) and n (column) as input and generates a two-dimensional array.	CO-1	60	30	10
7.	Write a python program to check whether person is eligible for voting or not. (accept age from the user)	CO-1	60	30	10
8.	Write a python program to check whether the entered number is even or odd.	CO-1	60	30	10
9.	Write a python program to check whether entered number is divisible by another entered number.	CO-1	60	30	10
10.	Write a python program to display "Yes" is entered number is divisible by 5 otherwise display "No"	CO-1	60	30	10
11.	Prepare a python program which can print first 10 even and odd numbers using while statement	CO-2	60	30	10
12.	Write a python program which can print first 10 integers and its square using while/for loop.	CO-2	60	30	10
13.	Write a python program which can print sum of first 10 natural numbers using while/for loop.	CO-2	60	30	10
14.	Write a python program which can identify the prime number between the range given using while/for loop.	CO-2	60	30	10
15.	Consider a situation where you want to iterate over a string and want to print all the characters until a letter 'e' or 's' is encountered. It is specified that you have to do this using loop and only one loop is allowed to use.	CO-2	60	30	10
16.	Consider the situation when you need to write a program which prints the number from 1 to 10 and but not 6. It is specified that you have to do this using loop and only one loop is allowed to use.	CO-2	60	30	10
17.	Create a Class with instance attributes	CO-2	60	30	10

				PLA /ELA	
S.	Laboratory Bractical Titles	Relevant COs	Perfor	mance	Viva-
No.		Number(s)	PRA*	PDA**	Voce
			(%)	(%)	(%)
18.	Create a Vehicle class without any variables and methods	CO-2	60	30	10
19.	Write a Python function to find the Max of three numbers.	CO-2	60	30	10
20.	Write a Python program to reverse a string.	CO-2	60	30	10
21.	Create a free cloud account	CO-3	70	20	10
22.	Store data on cloud and retrieve it.	CO-3	60	30	10
23.	Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool.	CO-4	70	20	10
24.	Connect the computers in Local Area Network	CO-4	70	20	10
25.	Connect 2 or more devices using Bluetooth	CO-4	70	20	10
26.	Connect 2 or more devices using infrared	CO-4	70	20	10
27.	Connect 2 more machine using m2m	CO-4	70	20	10
28.	Connect 2 or more different devices using access point	CO-4	70	20	10
29.	Connect 2 devices suing LPWAN (Smart Meter)	CO-4	70	20	10
30.	Connect 2 or more devices using RFID	CO-4	70	20	10
31.	Identify a problem and develop an app	CO-5	70	20	10

Legend:

PRA*: Process Assessment PDA**: Product Assessment

- **Note:** This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.
- P) Suggested Instructional/ Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S.	Name of Equipment, Tools	Broad	Relevant
No.	and Software	Specifications	Experiment/Practical
			Number
1	Python software	Openly available as per instruction	As mentioned above list
2	Cables connecters and crimping tools	Cat 6e cable, RJ-45 connectors and Crimping Tool	
3	Bluetooth and infrared devices	Any mobile and wireless keyboard and mouse	
4	IoT free cloud	Free available	
5	Smart devices	Like meters, bulbs etc.	
6	Wireless access point	Wireless router or access point	-
8	Arduino development board	Arduino Uno and Arduino Nano.	-
6	Raspberry Pi	Raspberry Pi 4/ Raspberry Pi 3/ Raspberry Pi 2	-

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1	Let Us Python	Kanetkar Yashavant	BPB Publications ISBN: 9789388511568, 9789388511568
2	IOT (Internet of things) and Its Application	P K Pandey	T Balaji Publication (1 January 2020) ISBN- 10: 8194136385 ISBN-13: 978-8194136385
3	Raspberry Pi Cookbook: Software and Hardware Problems and Solutions	Simon Monk	Shroff/O'Reilly; Third edition (4 October 2019), ISBN-10: 9352139267 ISBN-13: 978- 9352139262
4	Raspberry Pi Cookbook: Software and Hardware Problems and Solutions,	Simon Monk	Shroff/O'Reilly; Third edition (4 October 2019) ISBN-10: 9352139267 ISBN-13: 978- 9352139262
5	Cloud Computing: Concepts, Technology & Architecture	Erl	Pearson Education India; 1st edition (1 January 2014), ISBN-10: 9332535922 ISBN- 13: 978-9332535923

(b) Online Educational Resources:

- 1. nptel.iitm.ac.in/courses/.../IIT.../lecture%2023%20and%2024.htm
- 2. en.wikipedia.org/wiki/Shear_and_moment_diagram
- 3. www.freestudy.co.uk/mech%20prin%20h2/stress.pdf
- 4. www.engineerstudent.co.uk/stress_and_strain.html
- 5. https://www.iit.edu/arc/workshops/pdfs/Moment_Inertia.pdf
- 6. https://www.veritis.com/blog/aws-vs-azure-vs-gcp-the-cloud-platform-of-your-choice/
- 7. https://wiki.python.org/moin/TimeComplexity
- 8. www.engineerstudent.co.uk/stress_and_strain.html
- 9. https://www.iit.edu/arc/workshops/pdfs/Moment_Inertia.pdf Amini, P. (2014). Sulley: Pure Python fully automated and unattended fuzzing frame- work. https://github.com/OpenRCE/sulley

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested OER, before use by the students.

(c) Others:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Lab Manuals

Diploma in Electrical Engineering		Semester- VI	SBTE, Bihar
A)	Course Code	: 2400604D(T2400604D/P2400604D/S2400604D)	
B)	Course Title	: Drone Technology (Advanced)	
C)	Pre- requisite Course(s)	: Drone Technology (Basics)	
D)	Rationale	:	

In previous semester, a course in drone technology broadly discussed about basic principles, functions and interface of different components and design simple drone structure. In order to understand the successive development of drones / UAVs in terms of their geometric structure, working methodology and navigation control etc., so it is important to study the advanced course on Drone Technology. This course includes the study of Static and dynamic force analysis on drone, advance flying features, navigation control, maintenance and advance applications of different types of drone.

E) **Course Outcomes (COs):** After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- CO-1 Apply the concept of engineering mechanics for stability of drone.
- CO-2 Design the structure of drone using GPS module and thermal Image camera.
- CO-3 Operate drone using advance flight controller board.
- CO-4 Perform drone maintenance and assembly.
- CO-5 Use drone in advance applications like precision agriculture, security, IoT, etc.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO-1	PSO-2
(COs)	Basic and	Problem	Design/	Engineering	Engineering Project		Life Long		
	Discipline	Analysis	Development	Tools	Practices for Society,	Management	Learning		
	Specific		of Solutions		Sustainability and				
	Knowledge				Environment				
CO-1	3	-	-	-	-				
CO-2	2	2	-	3	3	-	-		
CO-3	2	2	3	3	-	-	-		
CO-4	3	-	-	3	-	-	-		
CO-5	-	2	2	-	-	3	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

CI:

G) Teaching & Learning Scheme:

Legend:

	Course Title	Scheme of Study (Hours/Week)							
Course Code		Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	т						
2400604D	Drone Technology (Advanced)	03	-	04	02	09	06		

Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

	epo Oge Course Title O	Assessment Scheme (Marks)							
			Theory Assessment (TA)		Term Work & Self- Learning Assessment (TWA)		Lab Assessment (LA)		(VA+LA)
		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+T	
	2400604D	Drone Technology (Advanced)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400604D

Majo	or Theory Session Outcomes (TSOs)	Units	Relevant
			COs
TCO 1-	Duran fund hade dia suara of suches atom	Unit 1.0 Engineering mechanics for Drone	Number (s)
150 Ia.	drone.	Technology	0-1
TSO 1b.	Determine centroid of given drone structure.	1.1 Drone Mechanics	
TSO 1c.	Determine center of gravity of different drone structure.	 Free body diagram of drone Method of finding resultant of force 	
TSO 1d.	Analyze different types of force acting drone system.	Equilibrium of coplanar force system	
TSO 1e.	Differentiate between static and dynamic force analysis.	Center of Gravity Centroid of plane figure	
TSO 1f.	1f. Explain how gyroscopic motion keeps drone balanced and hovering.	 Center of gravity of solid bodies 1.3 Force analysis in drone Force analysis in drone Forces of flight Principle axes and rotation of aerial systems 	
		1.4 Dynamics of machineStatic and dynamic force analysisGyroscopic motions	
TSO 2a.	Describe properties and application of smart materials use in UAV frame.	Unit-2.0 Drone Frame and Components	CO-2
TSO 2b.	Calculate the diameter of the propeller for given drone frame size.	2.1 Drone frame designCalculation principle for drome frame sizes	
TSO 2c.	Determine size of quadcopter frame and diameter of propeller of drone	 Quadcopter frame design Smart materials for UAV frame 	
TSO 2d.	Describe working of GPS and its hardware interfacing.	 Green material uses in drone 2.2 Advance Drones component 	
TSO 2e.	Write steps to interface GPS module for drone navigation.	GPS, Interfacing of GPS hardwareThermal and chemical sensor	
TSO 2f.	Describe different RF blocks and antennas used in RF transmitter and receiver.	 Tilt and LiDAR sensor 2.3 RF transmitter and receiver RF blocks RF antennas 2.4 Micro-electromechanical systems (MEMS) based sensor 2.5 HD and thermal Image camera 	
TSO 3a.	Identify features and specifications of FCB use in different application	Unit-3.0 Advance flight controller Board (FCB)3.1 Specification and ports of FCB3.2 Software for FCB	CO-3

Majo	or Theory Session Outcomes (TSOs)	Units	Relevant COs
			Number (s)
TSO 3b. TSO 3c. TSO 3d. TSO 3e. TSO 3f.	Explain ports of any given advance flight controller board. Write steps of software installation of flight controller board. Describe installation and calibration steps of radio telemetry with FCB. Write steps of calibration of accelerometer and ESC with FCB. Describe interfacing of GPS with FCB.	 Software installation 3.3 Radio Communication with FCB Installation of Radio Telemetry Radio Calibration with FCB 3.4 Calibration of accelerometer 3.5 Calibration of ESC 3.6 Interface of motor with FCB using ESC 3.7 GPS interface with FCB 3.8 Safety features of advance FCB 	
TSO 4a.	Describe challenges comes in drone maintenance.	Unit-4.0 Maintenance and assembling of Drone 4.1 Need and scope of drone maintenance	CO-4
TSO 4b.	Describe measuring devices and instrument use in drone maintenance.	4.2 Types of maintenance4.3 Routine drone maintenance and its checklist	
TSO 4c.	Describe measuring instrument used to measure electrical parameters in drone.	 Recording basic details Structural inspection 	
TSO 4d.	Write sequence of steps use in assembling of drone.	 Battery check Software/firmware 4.4 Types of measuring instrument use in drone maintenance 4.5 Measurement of different electrical parameters related with drone hardware 4.6 Assembly of drones Concept of interchangeability Principle of gauging and their applicability in drone assembly Parameters and profile measurements of standard propellers Concepts of drone assembly using 3D modeling 	
TSO 5a.	Describe function of autonomous drone using AI.	Unit-5.0 Advance Drone Application 5.1 Application of AI in Drone Technology	CO-5
TSO 5b.	Describe IoT enable UAV for surveillance and data gathering.	5.2 IoT and Computer vision integrated Drone 5.3 Drone interface with smart-phone	
TSO 5c. Explain drone applications based on cost saving, enhanced efficiency and profitability aspects.		 5.4 Drone Applications in Military Precision Agriculture 	

Note: One major TSO may require more than one theory session/period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400604D

Practical/Lab Session Outcomes (LSOs)	S.	Laboratory Experiment / Practical Titles	Relevant
	No.		Number(s)
LSO 1.1 Use the force of gravity to compute the centre of gravity for a given drone structure.	1.	Determine Centre of gravity of different done structure.	CO-1
LSO 2.1 Develop skills of observation and interpreting phenomenal changes on Drone model for stability and hovering.	2.	Demonstrate gyroscopic effect on a drone model	CO-1
 LSO 3.1 Draw various frame to be required in designing drone structure. LSO 3.2 Use Measuring instrument in designing drone frame. LSO 3.3 Choose suitable materials for making drone frame 	3.	Compare different types of airframe structure like quadcopter frame (plus shape, cross shape and H-shape), hexacopter frame (hexa + and hexa S).	CO-2, CO-4
LSO 4.1 Identify and measure the condition of sensors. LSO 4.2 Interface Tilt and LiDAR sensors in drone.	4.	Test Tilt and LiDAR sensors and their characteristics with Microcontroller based Flight controller board.	CO-2
 LSO 5.1 Identify different component of GPS module LSO 5.2Measure and use signals from GPS module to determine latitude & longitude. LSO 5.3 Diagnose problems using appropriate instruments/tools related to GPS navigation. 	5.	Demonstrate the interfacing of GPS module to drone navigation.	CO-2, CO-3
LSO 6.1 Measure characteristics of HD and thermal Image camera. LSO 6.2 Diagnose common problems related to HD and thermal Image camera.	6.	Test HD and thermal Image camera and their characteristics.	CO-2
LSO 7.1 Identify the characteristics of RF circuit blocks like amplifier, and filters. LSO 7.2 Identity different antennas used. LSO 7.3 Operate drone using RC transmitter and receiver.	7.	Identify, configure and operate 433MHz and 2.4 GHz RC transmitter and receiver.	CO-2
LSO 8.1 Test the different peripheral interconnections with FCB LSO 8.2 Troubleshoot advance Flight control board (FCB)	8.	Programming and configure of parameters in flight control board (FCB).	CO-3
LSO 9.1 Configure radio communication device to control drones. LSO 9.2 Operate drone using RC transmitter and receiver.	9.	Test and perform communication of advance Flight control board with RF transceiver.	CO-3, CO-2
LSO 10.1 Measure various parameters of GPS system LSO 10.2 Interface GPS system with flight controller board.	10.	Test and perform communication of Flight control board (FCB) with GPS	CO-3, CO-2
LSO 11.1 Configure HD and thermal image camera with drone. LSO 11.2 Demonstrate use of HD and thermal image camera with FCB	11.	Test and troubleshoot HD and thermal image camera with advance FCB in drone.	CO-3, CO-2
LSO 12.1 Measure voltage, current frequency using Digital Multimeter LSO 12.2 Measure peak to peak voltage, time period, and duty cycle using DSO and waveform generator. LSO 12.3 Measure unknown frequency and its level using spectrum analyzer.	12.	Measure various electric parameters in drone hardware	CO-4

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 13.1 Inspect drone as per the given checklist	13.	Perform preventive maintenance of drone	CO-4
LSO 13.2 Diagnose drone problems after flying of		components	
50 and 100hrs			
LSO 14.1 Perform dismantle process of drone.	14.	Dismantle and service of different parts of	CO-4
LSO 14.2 perform services need for operation		drone system	
LSO 14.3 Check and Install different parts of the			
drone system.			
LSO 14.4 Assemble drone component.			

- L) Suggested Term Work and Self Learning: S2400604D Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Prepare maintenance report for small UAV.
- 2. Survey nearby electronics shop and Prepare report on types of drone frames and drone sensors available and its specification.
- 3. Prepare report of surveying & mapping of our institute using drone with HD and thermal image camera.
- 4. Prepare report on land and crops quality of nearby agriculture field using drone.
- 5. Prepare report on Identify and select different application drones like agriculture, Surveillance, Inspections and gathering Information for disaster management.
- 6. Download 5 videos on advance FCB of drone design. Watch them and write report on it.
- 7. Market survey on different types of FCB, its specification and specific application and prepare report.
- 8. Develop mission completion drone with the help of GPS based Advance FCB.

c. Other Activities:

- 1. Seminar Topics-Drone stability using gyroscopic motion, Quadcopter frame, Green material use in drone design, GPS based drones, types of HD and thermal Image camera, Safety features in advance drone, Drone Assembling, Military drone.
- 2. Visits: Visit nearby small industry, Drone institute facilities. Prepare report of visit with special comments of advance drone technology used, material used, cost of printed component.
- 3. Surveys: Survey nearby electronics shop and Prepare report of list of advance drone components and its specification.
- 4. Product Development
- 5. Software Development

d. Self-Learning Topics:

- 1. Different types Drones frame
- 2. Overview of GPS technology
- 3. Different types of HD and thermal Image camera
- 4. Safety features in Drone
- 5. Advance drone application

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix									
	Theory Asses	sment (TA)**	Term Wo	ork Assessm	ent (TWA)	Lab Assessment (LA) [#]				
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term V	Nork & Self- Assessmer	Learning It	Progressive Lab Assessment	End Laboratory Assessment			
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)			
	Sem Test			Projects	Activities*					
	Semirest									
CO-1	15%	15%	20%	20%	20%	25%	25%			
CO-2	20%	20%	20%	20%	20%	25%	25%			
CO-3	25%	25%	20%	20%	20%	25%	25%			
CO-4	25%	25%	20%	20%	20%	25%	25%			
CO-5	15%	15%	20%	20%	20%	-	-			
Total	30	70	20	20	10	20	30			
Marks			L	50		1				

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.
- N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	(S)		
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)		
Unit 1.0 Engineering mechanics for Drone Technology	8	CO-1	12	04	04	04		
Unit 2.0 Drone frame and components	10	CO-2	14	04	04	06		
Unit 3.0 Advance Flight Controller Board	12	CO-3	16	04	06	06		
Unit 4.0 Maintenance and assembling of drone	10	CO-4	16	04	06	06		
Unit 5.0 Advance Drone Application	8	CO-5	12	04	04	04		
Total Marks	48		70	20	24	26		

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

S.		Polovant		PLA/ELA	
No.	Laboratory Brastical Titles	COc	Perfor	mance	Viva-
		COS	PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
1.	Determine Centre of gravity of different done structure.	CO-1	50	40	10
2.	Demonstrate gyroscopic effect on a drone model	CO-1	40	50	10
3.	Compare different types of airframe structure like quadcopter frame (plus shape, cross shape and H-shape), hexacopter frame (hexa + and hexa S).	CO-2	50	40	10
4.	Test Tilt and LiDAR sensors and their characteristics with Microcontroller based Flight controller board.	CO-2	50	40	10
5.	Demonstrate the interfacing of GPS module to drone navigation.	CO-2, CO-3	50	40	10
6.	Test HD and thermal Image camera and their characteristics.	CO-2	50	40	10
7.	Identify, configure and operate 433MHz and 2.4 GHz RC transmitter and receiver.	CO-2	60	30	10
8.	Programming and configuration of parameters in flight control board (FCB).	CO-3	60	30	10
9.	Test and perform communication of advance Flight control board with RF transceiver.	CO-3, CO-2	60	30	10
10.	Test and perform communication of Flight control board (FCB) with GPS	CO-3, CO-2	60	30	10
11.	Test and troubleshoot HD and thermal image camera with advance FCB in drone.	CO-3, CO-2	60	30	10
12.	Measure various electric parameters in drone hardware	CO-4	40	50	10
13.	Perform preventive maintenance of drone components	CO-4	60	30	10
14.	Dismantle and service of different parts of drone system	CO-4	60	30	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S.	Name of Equipment, Tools and	Broad	Relevant
No.	Software	Specifications	Experiment/Practical
			Number
1.	Drone Frame	Tricopter/Quadcopter/Hexacopter	1-15
2.	Propellers	15 X 5.5 CW/Others	1-15
3.	GPS module	M8N Series	1-15
4.	Drone Camera	15-20 Megapixel	1-15
5.	Camera Gimble	3 Axis feature, 360 Degree movement	1-15
6.	Tilt Sensor	8-30 volt	1-15
7.	LiDER sensor	Range 75m to 200m	1-15
8.	Battery	Lithium Polymer Battery,8000 to 10000 mAh	1-15
9.	Motor	BLDC, 370kv	1-15
10.	Electronic speed Controller (ESC)	40 Amp	1-15
11.	Flight Controller Board	CC3D/Pixhawk/Others	1-15
12.	Transmitter and Receiver for radio signal	10 Channels and more, 2.4 GHz & 5.8 GHz	1-15
13.	Embedded system for AI application on UAV	Open Source Jetson Baseboard /Others	1-15

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author (s)	Publisher and Edition with ISBN
1.	Make: DIY Drone and Quadcopter Projects: A Collection of Drone-Based Essays, Tutorials, and Projects	Editors of Make	Shroff/Maker Media, First edition 2016, ISBN-978-9352133994
2.	Make: Getting Started with Drones: Build and Customize Your Own Quadcopter	Terry Kilby & Belinda Kilby	Shroff/Maker Media, First edition 2016, ISBN-978-9352133147
3.	Agricultural Drones: A Peaceful Pursuit	K R Krishna	Apple Academic Press,1st edition 2018, ISBN-978-1771885959
4.	Building Multicopter Video Drones: Build and fly multicopter drones to gather breathtaking video footage	Ty Audronis	Packt Publishing Limited; Illustrated edition,2014, ISBN-978-1782175438
5.	The Complete Guide to Drones	Adam Juniper	Ilex Press, Extended 2nd Edition,2018 ISBN-9781781575383
6.	Unmanned Aircraft Systems - UAVS Design, Development and Deployment (Aerospace Series)	R Austin	John Wiley & Sons Inc, 1st edition, 2010, ISBN-978-0470058190

(b) Online Educational Resources:

- 1. https://archive.nptel.ac.in/courses/101/104/101104083/
- 2. https://onlinecourses.nptel.ac.in/noc21_ae14/preview
- 3. https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle
- 4. https://fusion.engineering/
- 5. https://robocraze.com/blogs/post/best-flight-controller-for-drone
- 6. https://www.youtube.com/watch?v=lrkFG7GilPQ
- 7. https://www.youtube.com/watch?v=KjG6FKCNCbM
- 8. https://ardupilot.org/
- 9. https://px4.io/
- Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- Development of an Autonomous IoT-Based Drone for Campus Security, Abdelrahman Mahmoud Gaber, Rozeha A. Rashid, Nazri Nasir, Ruzairi Abdul Rahim, M. Adib Sarijari, A. Shahidan Abdullah, Omar A. Aziz, Siti Zaleha A. Hamid, Samura Ali,2021
- 2. IoT based UAV platform for emergency services; S. K. Datta, J. L. Dugelay, & C. Bonnet, 2018
- 3. Development of an Autonomous Drone for Surveillance Application; M. A. Dinesh, S. Santhosh Kumar, J. Sanath, K. N. Akarsh & K. M. Manoj Gowda,2018
- 4. Autonomous cloud-based drone system for disaster response and mitigation; C. Alex & A. Vijaychandra,2016
- 5. https://www.geeetech.com/Documents/CC3D%20flight%20control%20board.pdf
- 6. https://www.bhphotovideo.com/lit_files/201146.pdf
- 7. http://tricopter.hu/docs/cc3d_manual.pdf

D) Rationale

This advanced course on 3D Printing tries to develop understanding of the process of making real complex objects from digital models in the students using various 3D printing processes and materials (Plastics, Ceramics and Metals). It also covers the post processing required and details about various printing process and parameters to make a quality 3D printed component. This course can only be taken up after completing 3D Printing and Design (Basic) course offered in previous semester.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Select newer 3D Printing material for various applications.
- **CO-2** Use solid based 3D Printing processes to develop products.
- **CO-3** Use liquid-based 3D Printing processes to develop products.
- **CO-4** Use powder-based 3D Printing processes to develop products.
- **CO-5** Apply post processing techniques and quality checks on 3D printed components.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO-1	PSO-2
(COs)	Basic and	Problem	Design/	Engineering	Engineering	Project	Life		
	Discipline	Analysis	Development	Tools	Practices for	Management	Long		
	Specific		of Solutions		Society,		Learning		
	Knowledge				Sustainability and				
					Environment				
CO-1	3	-	-	-	2	-	2		
CO-2	3	-	2	2	-	-	2		
CO-3	3	-	2	2	-	-	2		
CO-4	3	-	2	2	-	-	2		
CO-5	3	2	-	3	2	-	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course		Scheme of Study (Hours/Week)							
Code	Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	NotionalTotalHoursHours(TW+ SL)(CI+LI+TW+SL)				
		L	Т							
2400604E	3D Printing and Design (Advanced)	03	-	04	02	09	06			

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case

method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

- LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)
- Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.
- TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)
- SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.
- C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)
- **Note:** TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			Assessment Scheme (Marks)						
Course Code		Theory Ass	Theory Assessment		Term Work &		essment	(P	
	Course Title	(14)		Assessment (TWA)		(14)		\+TWA+	
		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+	
2400604E	3D Printing and Design (Advanced)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self-Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units:

T2400604E

Ma	ijor Theory Session Outcomes (TSOs)		Units	Relevant
				COs Number(c)
TSO 1a	Evaluin various forms of 2D printing raw	Linii	1.0 2D Printing Materials	Number(s)
130 10.	material.	Unit		01
TSO 1b.	Select material for the given popular 3D printing processes with justification.	1.1	Various forms of 3D printing raw material- Liquid, Solid, Wire, Powder.	
TSO 1c.	Select various Polymer based 3D printing raw materials with justification.	1.2	Jetting and Direct Energy deposition 3D	
TSO 1d.	Explain procedure of Powder preparation for the given 3D printing material.	1.3 1.4	Polymers, Metals, Non-Metals, Ceramics. Polymers and their properties.	
TSO 1e.	Explain properties of the given Metal/Ceramics 3D printing material.	1.5	Powder Preparation and their desired	
TSO 1f.	Choose suitable 3D printing material on the basis of Performance Requirements and Material Properties.	1.6	Choosing the Right 3D Printing Material on the basis of Performance Requirements and Material Properties.	
TSO 2a.	Explain working of a typical FDM based 3D Printer.	Unit	t-2.0 Solid based 3D Printing Processes	CO1, CO2
TSO 2b.	Justify use of FDM based 3D printing process and material for the given component.	2.1 2.2	Basic principle and working of fused deposition modeling (FDM) process. Liquefaction, solidification and bonding.	
TSO 2c.	Explain the Laminated Object Manufacturing process.	2.3 2.4	Laminated Object Manufacturing process. Cost estimation of FDM 3D printed component.	
TSO 2d.	Estimate the cost and time of the given FDM based 3D printed component.			
TSO 3a.	Explain the phenomenon of Photo	Unit	t-3.0 Liquid based 3D Printing Processes	CO1, CO3
TSO 3b.	Polymerization. Explain the working of a typical Stereo	3.1	Photo polymerization.	
TCO 24	Lithography based 3D Printer.	3.2	Principle and working of stereo lithography apparatus.	
150 30.	given component.	3.3	SLA based 3D printing processes.	
TSO 3d.	Justify use of SLA based 3D printing process	3.4	SLA based 3D printing process materials.	
TSO 3e.	Estimate the cost and time of the given SLA	3.5	Scanning techniques.	
	based 3D printed component.	3.6	Curing processes.	
TSO 3f.	Apply Curing process to SLA based 3D printed component.	3.7	Cost estimation of SLA 3D printed component.	
TSO 4a.	Explain powder fusion mechanism.	Unit	t-4.0 Powder based 3D Printing Processes	CO1, CO4
TSO 4b.	Explain working of a typical SLA based 3D Printer.	4.1	Powder fusion mechanism.	
TSO 4c.	Justify use of SLA based 3D printing process and material for the given component.	4.2	Sintering (SLS) process.	
TSO 4d.	Explain Net shape process.	4.3	SLS based 3D printers.	
TSO 4e.	Explain Binder Jet 3D printing process.	4.4	Laser Engineering Net Shaping process.	
TSO 4f.	Justify use of Binder Jet 3D printing process	4.5	Electron Beam Melting.	
TSO 4~	Estimate the cost and time of the given CL	4.6	Binder Jet 3D Printing.	
130 4y.	based 3D printed component.	4.7	Materials and Process parameters for SLS based 3D printing processes.	

Major Theory Session Outcomes (TSOs)			Units	Relevant COs Number(s)
		4.8	Cost estimation of SLS based 3D printed component.	
TSO 5a. Justify t given 3 TSO 5b. List the	the need of post processing in the D printed component. various post processing techniques.	Uni 5.1	t-5.0 Post Processing and Quality Need of post processing: Functional and Aesthetic reasons.	CO1, CO2, CO3, CO4, CO5
TSO 5c. List the TSO 5d. Explain process comport	steps to perform post processing. the given Cleaning related post sing approach for 3D printed nent.	5.2 5.3	Steps of Post Processing: Cleaning/Support removal, Fixing, Curing or hardening, Surface finishing, Colouring. Cleaning: Support Removal (FDM and Material	
<i>TSO 5e.</i> Explain post pro compor	the given Surface finishing related ocessing approach for 3D printed nent.	Jetting); Powder Removal (SLS and Powder Bed Fusion); Washing (SLA and Photo polymerisation).		
<i>TSO 5f.</i> Apply s techniq compor	imple inspection and testing jues on the given 3D printed nent.	5.5	Surface finishing: Sanding, Polishing, Tumbling, Hydro dipping, Epoxy coating, Electro Plating, Vapour smoothing-Acetone treatment.	
<i>TSO 5g.</i> Identify 3D prin	the type of defect(s) in the given ted component.	5.6 5.7 5.8	Colouring, Coating, Priming and Painting. Inspection and testing: Digital, Visual, Physical. Defects and their causes.	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400604E

Pract	Practical/Lab Session Outcomes (LSOs)		Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1.	Use the available 3D printing software.	1.	Develop the assigned digital single complex	CO1, CO2
LSO 1.2.	Select printing process parameters based on the type/make of Printer and raw material		component using FDM based 3D Printer and available material.	
LSO 1.3.	Set printing process parameters.			
LSO 1.4.	Produce a complex component using available FDM Printer.			
LSO 2.1.	Use the available 3D printing software.	2.	Develop the assigned digital single complex	CO1, CO3
LSO 2.2.	Select printing process parameters based on the type/make of Printer and raw material		component using SLA based 3D Printer and available material.	
LSO 2.3.	Set printing process parameters.			
LSO 2.4.	Produce a complex component using available SLA Printer.			
LSO 2.5.	Perform curing of the SLA based 3D printed component.			
LSO 3.1.	Use the available 3D printing software.	3.	Develop the assigned digital single complex	CO1, CO4
LSO 3.2.	Select printing process parameters based on the type/make of Printer and raw material		component using SLS based 3D Printer and available material.	
LSO 3.3.	Set printing process parameters.			
LSO 3.4.	Produce a complex component using available SLS Printer.			

Pract	Practical/Lab Session Outcomes (LSOs)		Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 4.1. LSO 4.2.	Use the available 3D printing software. Select printing process parameters based on the type/make of Printer and raw material	4.	Develop same digital single complex component using FDM, SLA and SLS based 3D Printers and compare the printed components on the basis of Cost, Time, Surface finish,	CO1, CO2, CO3, CO4
LSO 4.3.	Set printing process parameters.		Strength.	
LSO 4.4.	Produce a complex component using available FDM, SLA and SLS Printer.			
LSO 4.5.	Perform Cost, Time, Surface finish and Strength estimations related to 3D printed components.			
LSO 5.1.	Use the available 3D printing software.	5.	Print one digital assembly on SLA/SLS based	CO2/CO3/
LSO 5.2.	Select printing process parameters based on the type/make of Printer and raw material		3D Printer.	CO4
LSO 5.3.	Select appropriate tolerance, fit and printing process parameters.			
LSO 5.4.	Produce an assembly using available SLA/SLS Printer.			
LSO 6.1.	Use of available 3D scanner.	6.	Scan the given real complex component and	CO2, CO3,
LSO 6.2.	Develop 3D digital model using scanning approach.		print it using FDM/SLA/SLS based 3D Printer.	CO4
LSO 6.3.	Use the available 3D printing software.			
LSO 6.4.	Produce a complex component using available SLA Printer.			
LSO 7.1.	Identify tools/devices/chemicals for post processing	7.	Apply post processing techniques on the 3D printed component of experiment number 1	CO5
LSO 7.2.	Perform post processing operations on printed component.		and/or 2 and/or 3.	
LSO 8.1.	Identify tools/devices/techniques for inspection and testing.	8.	Check the soundness of the 3D printed component of experiment number 1 and/or 2	CO5
LSO 8.2.	Identify the defects in 3D printed components		and/or 3 using available devices/techniques.	
LSO 8.3.	Apply remedial measures to bring soundness in the defective 3D printed component.			

- L) Suggested Term Work and Self Learning: S2400604E Some sample suggested assignments, micro project and other activities are mentioned here for reference
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Prepare a list of solid, liquid and powder form 3D printing raw materials stating their cost, colour opacity, flexibility and weight per unit volume.
- 2. Download 5 videos of 3D printing of different components using FDM, SLA and SLS each. Watch them and write a report to detail out the steps involved, 3D Printer used, 3D Printing software used, material used, complexity involved, printing time, post processing steps used.

- 3. Prepare a report on post processing steps and techniques used for 3D printed components using FDM, SLA, SLS.
- 4. Prepare a report to compare FDM, SLA, SLS based 3D printing process on the basis of cost, surface finish, printer setting time, printing time and post processing time and cost involved.
- 5. Download 5 videos of 3D printing processes **other than** FDM, SLA and SLS. Watch them and write a report to detail out the steps involved, 3D Printer used, 3D Printing software used, material used, complexity involved, printing time, post processing steps used.
- 6. Download 1 video related to inspection and testing of 3D printed components using different techniques like Visual inspection, Scanning Electron Microscopy (SEM), CT system, X-ray, Penetration testing, Infrared thermography, Leak or pressure testing for complex structures, Eddy current, Mechanical property inspection to measure tensile, yield, shear, fatigue, hardness, density, impact strength, Metallography (Microstructure testing). Watch them and write a report to detail out the steps involved and equipment used.

c. Other Activities:

- 1. Seminar Topics:
 - Newer 3D printing raw materials
 - Direct energy 3D printing process
 - Material jetting 3D printing process
 - Micro 3D printing process
 - Metal and Ceramic 3D printing
 - 3D printing of Jewelry
 - 3D printing of Bio implants
 - Printing of flexible plastic components
- 2. Visits: Visit nearby tool room/industry with 3D Printing facilities. Prepare report of visit with special comments of 3D printing technique used, material used, single component/batch production/mass production and cost of printed component.
- 3. Self-Learning Topics:
 - 3D printing of transparent, soft and flexible plastic components
 - 3D printing of metal components
 - 3D printing of ceramic components
 - 3D scanning process.
 - Chemical post processing techniques
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix						
	Theory Asses	sment (TA)**	Term W	Term Work Assessment (TWA)			ment (LA) [#]
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term \	Term Work & Self Learning Assessment			End Laboratory Assessment
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)
	Sem Test			Projects	Activities*		
CO-1	15%	15%	15%	-	-	10%	20%
CO-2	20%	20%	20%	25%	25%	25%	20%
CO-3	20%	20%	20%	25%	25%	25%	20%
CO-4	20%	20%	20%	25%	25%	25%	20%
CO-5	25%	25%	25%	25%	25%	15%	20%
Total	30	70	20	20	10	20	30
Marks			LL	50		1	

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total Relevant		Total	ETA (Marks)			
	Classroom Instruction (CI) Hours	COs Number(s)	Marks	Remember (R)	Understanding (U)	Application & above (A)	
Unit-1.0 3D Printing Materials	6	CO1	10	3	2	5	
Unit-2.0 Solid based 3D Printing Processes	10	CO1, CO2	14	4	5	5	
Unit-3.0 Liquid based 3D Printing Processes	10	CO1, CO3	14	4	5	5	
Unit-4.0 Powder based 3D Printing Processes	10	CO1, CO4	14	4	5	5	
Unit-5.0 Post Processing and Quality	12	CO1, CO2, CO3, CO4, CO5	18	5	5	8	
Total	48	-	70	20	22	28	

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Delevent	PLA/ELA		
S.	Laboratory Practical Titles	COc	Performance		Viva-
No.		Number(s)	PRA*	PDA**	Voce
		Nulliber(S)	(%)	(%)	(%)
1.	Develop the assigned digital single complex component using FDM based 3D Printer and available material.	CO1, CO2	30	60	10
2.	Develop the assigned digital single complex component using SLA based 3D Printer and available material.	CO1, CO3	30	60	10
3.	Develop the assigned digital single complex component using SLS based 3D Printer and available material.	CO1, CO4	30	60	10
4.	Develop same digital single complex component using FDM, SLA and SLS based 3D Printers and compare the printed components on the basis of Cost, Time, Surface finish, Strength.	CO1, CO2, CO3, CO4	30	60	10
5.	Print one assembly on SLA/SLS based 3D Printer.	CO2/CO3/ CO4	30	60	10
6.	Scan the given real complex component and print it using FDM/SLA/SLS based 3D Printer.	CO2, CO3, CO4	40	50	10
7.	Apply post processing techniques on the 3D printed component of experiment number 1 and/or 2 and/or 3.	CO5	40	50	10

			Polovant	PLA/ELA		
S.		Laboratory Practical Titles	COc	Performance		Viva-
	No.		COS Number(s)	PRA*	PDA**	Voce
			Number(s)	(%)	(%)	(%)
	8.	Check the soundness of the 3D printed component of	CO5	40	50	10
		experiment number 1 and/or 2 and/or 3 using available				
		devices/techniques.				

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S.	Name of Equipment,	Broad	Relevant
No.	Tools and Software	Specifications	Experiment/Practical
			Number
1.	High end computers	Processor Intel Core i7 with Open GL Graphics Card, RAM 32 GB,	All
		DDR3/DDR4, HDD 500 GB, Graphics Card NVIDIA OpenGL 4 GB, OS	
		Windows 10	
2.	Parametric Computer	CATIA/Solid works/NX/Creo OR Available with CoE	1 to 5
	Alded Design software		
3.	FDM based 3D printer	Fused Deposition Modelling system with complete accessories;	1,4,5,6
		Build Volume-300 x 300 x 300mm or Higher; Layer Thickness-0.1 –	
4	SIA based 2D printer	U.4 UR Available with COE	2456
4.	SLA based 3D printer	Common layer thickness 25–100 um Dimensional Accuracy + 0.5%	2,4,3,0
		(lower limit: ± 0.10 mm) cure time of only 1-3s per layer. Material	
		type: UV-sensitive liquid resin, Curing unit.	
5.	SLS based 3D printer	Printing Technology: SLS., Build Volume: 130 x 130 x 180 mm,	3,4,5,6
		Recommended min. wall thickness: 0.8 mm, Powder Diameter: 60	
		Microns, Material Type: Nylon, TPU, Light Source: Laser Diode	
6.	3D Printing Material	ABS/PLA, Resin based Photosensitive material,	1,2,3,4,5,6
		Polymer/metal/ceramic powder OR Available with CoE	
7.	3D Printing software	Latest version of software like:	1 to 6
		Cura/PrusaSlicer/ideaMaker/Meshmixer/MeshLab	
		OR Available with CoE	
8.	3D Scanner and	Handheld 3D scanner, Accuracy up to 0.1 mm, Resolution up to	6
	Processing software	0.2 mm, Real time onscreen 3D model projection and processing,	
		Extended field of view for capturing both large and small objects	
		Processing Software OR Available with CoF	
9.	Post processing	Deburring tools (tool handle & deburring blades). Electronic	7
	equipments and tools	Digital Caliper, Cleaning Needles, Art knife set, Long nose pliers,	
		Flush cutters, Wire brush, Nozzle cleaning kit, Tube cutter, Print	
		removal spatula, Needle file, Cutting mat, Glue stick, Wire	
		stripper, Chemicals, Etching agents etc.	
10.	Inspection and Testing	Visual inspection,	8
	devices	Devices related to:	

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
		 Scanning electron microscopy (SEM), CT system, X-ray, Penetration testing, Infrared thermography, Leak or pressure testing for complex structures, Eddy current, Mechanical property inspection to measure tensile, yield, shear, fatigue, hardness, density, impact strenght Metallography (Microstructure testing) 	

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing	Lan Gibson, David W. Rosen, Brent Stucker	Springer, 2010 ISBN: 9781493921133
2.	Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing	Andreas Gebhardt,	Hanser Publisher, 2011 ISBN: 156990507X, 9781569905074
3.	3D Printing and Design	Sabrie Soloman	Khanna Publishing House, Delhi ISBN: 9789386173768
4.	3D Printing and Rapid Prototyping- Principles and Applications	C.K. Chua, Kah Fai Leong	World Scientific, 2017 ISBN: 9789813146754
5.	Getting Started with 3D Printing: A Hands-on Guide to the Hardware, Software, and Services Behind the New Manufacturing Revolution	Liza Wallach Kloski, Nick Kloski	Make Community, LLC; 2nd edition, 2021 ISBN: 9781680450200
6.	Laser-Induced Materials and Processes for Rapid Prototyping	L. Lu, J. Fuh, Y.S. Wong	Kulwer Academic Press, 2001 ISBN: 9781461514695

(b) Online Educational Resources:

- 1. https://onlinecourses.nptel.ac.in/noc21_me115/preview
- 2. https://archive.nptel.ac.in/courses/112/104/112104265/
- 3. https://bigrep.com/post-processing/
- 4. https://www.mdpi.com/2227-7080/9/3/61
- 5. https://all3dp.com/2/best-3d-printing-books/
- 6. https://www.youtube.com/watch?v=TQY2IF-sFaI
- 7. https://www.youtube.com/watch?v=Oz0PoS5LPxg
- 8. <u>https://www.youtube.com/watch?v=6ejjh0GdyDc</u>
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. 3D Printing Projects DK Children; Illustrated edition, 2017
- 2. The 3D Printing Handbook: Technologies, design and applications Ben Redwood, Filemon Schöffer, Brian Garret, 3D Hubs; 1st edition, 2017
- 3. https://www.improprecision.com/inspection-method-for-3d-printed-parts/

- 4. 3D Printer Users' Guide
- 5. 3D Printer Material Handbook
- 6. Lab Manuals

A)	Course Code	: 2400604F(T2400604F/P2400604F/S2400604F)
B)	Course Title	: Industrial Automation (Advanced)

- C) Pre- requisite Course(s)
- : Industrial automation (Basic), Digital
 - Electronics and Basic programming skills

D) Rationale

This course on Advanced industrial automation offers students a hands-on approach to implement industrial control using modern controllers like Programmable Logic Controller (PLC), Distributed Control System (DCS)Supervisory Control and Data Acquisition (SCADA). Students will learn to identify and connect field inputs and outputs; communicate with, and program microprocessor-based controllers. Students will also connect, communicate with, and develop displays for computer-based operator interfaces. Process manufacturers typically employ Distributed Control System (DCS) Supervisory Control and Data Acquisition (SCADA) technologies to monitor and control the operations in their facilities. DCS and SCADA systems are now doing much more than simply monitoring and controlling. The course will enable the students to use of basic instructions and addressing, advanced PLC instructions in Ladder Logic and to identify and troubleshoot the faults in PLC system and do PLC maintenance. This course also introduces the students to industrial automation communications, PLC maintenance and troubleshooting also to become a successful automation engineer.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1.** Apply the principles of communication for industrial automation.
- **CO-2.** Test the output of the PLC ladder logic programs for the given application
- CO-3. Maintain PLC systems
- **CO-4.** Use SCADA for supervisory control and for acquiring data from the field.
- **CO-5.** Develop simple automation systems

F) Suggested Course Articulation Matrix (CAM):

Course	Programme Outcomes (POs)								ne Specific omes* Os)
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO-1	PSO-2
(COs)	Basic and	Problem	Design/	Engineeri	Engineering	Project	Life Long		
	Discipline	Analysis	Developmen	ngTools	Practices for Society,	Managem	Learning		
	Specific		tof Solutions		Sustainability and	ent			
	Knowledge				Environment				
CO-1	3	2	2	2	2	-	2		
CO-2	3	3	3	3	-	-	2		
CO-3	3	3	3	3	2	2	2		
CO-4	3	2	2	2	2	2	2		
CO-5	3	2	2	3	2	2	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Legend: CI:

				Scheme	of Study (H	ours/Week)	
Course Code	Course Title	Class Instru (C	room uction CI)	Lab Instruction (LI)	Notional Hours (TW+	Total Hours (CI+LI+TW+SL)	Total Credits (C)
		L	Т		SL)		
2400604F	Industrial Automation (Advanced)	03	-	04	02	09	06

Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances/ problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, Online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

				Assessment	: Scheme (Mar	ks)		
a		Theory Ass (T <i>F</i>	sessment A)	Term Wo Learning / (T	ork & Self- Assessment WA)	Lab Asse (L	essment A)	(MA+LA)
Course Cod	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+T
2400604F	Industrial Automation (Advanced)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self -learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self -learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400604F

Major	Theory Session Outcomes (TSOs)	Units	Relevant
-			COs
			Number(s)
TSO.1a	Describe how does a PLC	Unit-1.0 Industrial automation communication and	CO-1
	communicate?	Interfacing	
TSO.1b	Differentiate between parallel		
TCO 1 -	and series communication	1.1 Analog and Digital Communications on Plant Floors	
150.10	mechanism for the given	1.2 Introduction to Industrial Networking	
	communication protocols	1.3 RS232-422-485 standards for data communication	
TSO.1d	Describe the given	1.4 Industrial Ethernet	
	communication protocol used in	1.5 Concept of Fieldbus	
	PLC communication.	1.6 MODBUS protocol	
TSO.1e	Summarize PLC to PLC	1.7 Highway Addressable Remote Transducer (HART)	
	communication procedure	Protocol	
TSO.1f	Describe the common procedure	1.8 Interfacing of Programmable Logic Controller with other	
	to interface the PLC with other	hardware	
	given hardware.		
TSO 2a	Specify the proper I/O addressing	Unit-2 0 PLC Programming	CO-2
130.20	format of the given PLC.		
TSO.2b	Explain the use of different relay	2.1 PLC I/O addressing in ladder logic	
	type instructions for the given	2.2 PLC programming instructions using ladder logic and	
	operation.	relay type instructions	
TSO.2c	Describe how a program is	2.3 Program Scan cycle	
	executed with the help of Program	2.4 PLC arithmetic functions - Addition, subtraction,	
	Scan cycle	multiplication, division instructions, increment	
130.20	arithmetic functions to perform the	2.5 PLC logical functions - AND OR YOR NOT functions	
	given operation.	PIC compare and convert functions.	
TSO.2e	Develop ladder logic programs	2.6 Programming Timer –Addressing a timer block, status	
	using logical and comparison	bits, On delay, Off Delay and reset/retentive timer	
	instructions to perform the given	2.7 Programming Counter- Addressing a counter block,	
	operation	status bits, Up and Down counter, up-down counter,	
TSO.2f	Develop ladder logic programs	counter examples, register basics	
	using on delay, off delay and	2.8 Develop ladder logic for various simple applications	
	to create a delay in operation		
TSO.2g	Develop ladder logic programs		
	using Up, Down and UP-down		
	counter in a given PLC to count the		
	number of products		
TSO.3a	Describe Requirements for PLC	Unit-3.0 Installation and maintenance of PLC systems	CO-3
	enclosure.		
TSO.3b	Describe Proper grounding	3.1 PLC enclosure, grounding requirements, noise	
T CO 0	techniques.	generating inductive devices, leaky inputs and outputs,	
150.30	Describe noise reduction	techniques to reduce electrical noise and leakage.	
PE OST	Explain preventive maintenance	trouble shooting of hardware and software	
130.50	procedure associated with PLC	3.3 Diagnostic LED Indicators in PLCs	
	system to reduce environmental	3.4 Common problems	
	impact	 Internal problems – Check for PLC Power Supply, 	
TSO.3e	Identify faults in the given PLC	Emergency Push Button, Power Supply Failure,	
	system	Battery Failure, Electrical Noise Interference,	
TSO.3f	Explain the procedure for	Verify the PLC Program with the Master Program,	
TOOD	I roubleshooting PLC system	Corrupted PLC Memory	
150.3g	Prepare preventive maintenance	External problems - Power failure, faulty grounding and electrical problems - interference (DEL on Et til)	
	plan for the PLC system	and electrical noise interference (RFI or EMI),	

Major	Theory Session Outcomes (TSOs)	Units	Relevant
			COs
			Number(s)
TSO.3h	Use safety equipment's. Follow safe practices	 Status of the Output Modules and their associated Circuitry, Status of the Input Modules and their associated Circuitry, Field Input and Output Devices, Communication Issues. Environmental Conditions. Check for humidity, temperature, vibration, and noise-level limits specified by its manufacturer Troubleshooting of Specific Components of the PLC System Power Supply Troubleshooting I/O Modules Troubleshooting Troubleshooting PLC Program Errors 	
		 Troubleshooting the Working Environment of a 	
		PLC	
		Replacement of CPU 3.6 PLC trouble shooting flowchart	
		3.7 PLC maintenance – PLC maintenance checklist,	
		preventive maintenance procedure, maintenance plan	
		for the PLC system. 3.8 Safety procedure and safety equipment's.	
TSO.4.a	Describe the function of given	Unit-4.0 SCADA and DCS	CO-3
TSO.4.b	element of a SCADA system. Interface the given PLC with SCADA system using the given Open Platform Communications	 4.1 Introduction, need, benefits and typical applications of SCADA and DCS 4.2 SCADA Architecture - Remote Terminal Units (RTUs), 	
TSO.4.c	OPC). Describe the steps to develop a simple SCADA screen for the given industrial application.	 Master Terminal Units, Various SCADA editors, Communication protocols for SCADA 4.3 Comparison of SCADA with DCS 4.4 Interfacing SCADA system with PLC- Typical connection 	
TSO.4.d	Describe the procedure to maintain the SCADA based PLC	diagram, Object Linking and Embedding for Process Control (OPC) architecture	
	system for the given application.	4.5 Creating SCADA Screen HMI for simple object, Steps for linking SCADA object (defining Tags and items, creating trends etc) with PLC ladder program using OPC.	
		configuring simple applications using SCADA: Traffic	
		light control, water distribution, pipeline control, Power generation, transmission and distribution etc.	
		4.6 Procedure to maintain the SCADA based PLC system.	
TSO.5a	Identify different components used	Unit-5.0 Applications of Industrial Automation	CO-5
TSO.5b	Select automation components for a given situation	5.1 Manufacturing- Industrial Robots- welding robots, pick and place robots, Cabot's, Machine monitoring	
TSO.5c	In the given manufacturing or service industry Identify the areas where automation is possible.	system, supply chain, Automated assembly system, Flexible Automation and programmable Automation. 5.2 Health Care- microscopic robots for medical	
TSO.5d	Prepare plan for sustainable automation as per the requirement.	diagnosis, automated medication dispensing devices, AESOP, ZEUS, RP_7(remote presence 7th generation), DaVinci	
		5.3 Defense- guided rockets and missiles, counter measures, UAV drones, launcher, radar antenna,	
		5.4 Automobile – B reak monitoring system, Vehicle tracking system, Rear-view alarm to detect obstacles behind Four-wheel drive. Traction control system	
		Dynamic steering response, Anti-lock braking system (ABS) Adaptive cruise control, Adaptive headlamps,	

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
	Intelligent Parking Assist Syste Driverless/Autonomous Cars 5.5 Agriculture- harvesters, irrigation systems, plowi machines, self-driving tractors, grain yield sensor 5.6 Mining- Mine planning system, mine pictu compilation, mine control system, seismic imaginin laser imaging, Rig control system, automated drillin	n, ng re g, g,

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400604F

Pract	ical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1	Data communication from PLC to PC and vice versa	1.	Transfer the control data from PLC to PC and vice versa	CO1
LSO 1.2	Establish Communication channels between PLC s.	2.	Transfer the control data from PLC to PLC	CO1
LSO 1.3	Transfer data from sensors to PLC and from PLC to PC.	3.	Transfer the sensor data from sensor to PLC to PLC and PC	CO1
LSO 1.4	Interface the given PLC with a PC or a Laptop	4.	Interface the given PLC with a PC or a Laptop	CO1
LSO 2.1	Identify Different parts and front panel indicators of a PLC	5.	Identify the various parts and front panel status indicators of the given PLC.	CO2
LSO 2.2	Develop Ladder logic program for different arithmetic operations	6.	Develop/Execute ladder logic program for different arithmetic operations such as Addition, subtraction, multiplication, division increment, decrement, trigonometric in a given PLC	CO2
LSO 2.3	Develop Ladder logic program for different logical operations	7.	Develop/Execute ladder logic program for logical operations such as AND, OR, NOT, NAND, NOR, X-OR, X-NOR gate along with truth table	CO2
LSO 2.4	Program Latch and Unlatch circuit in a PLC for motor operation	8.	Program the given PLC to start run and stop the given motor using latch circuit	CO2
LSO 2.5	Create delay in operation using on delay, off delay and retentive timer function in a given PLC.	9.	Test the functionality of on delay, off delay and retentive timer for its correct operation in a given PLC.	CO2
LSO 2.6	Count the number of objects/events using Up counter, Down counter and UP/Down counter in a PLC	10.	Test the functionality of Up, Down and Up- down counter for its correct operation in a given PLC.	CO2
LSO 2.7	Program PLC using ladder logic to control a LED/Lamp	11.	Develop/Execute a ladder logic program to put LED/lamp in the blinking mode	CO2
LSO 2.8	Program PLC using ladder logic to control a simple traffic light system	12.	Develop/Execute a ladder logic program to control a simple traffic light control system using PLC	CO2
LSO 3.1 LSO 3.2 LSO 3.3	Use hygrometer to measure the humidity inside the panel Use thermometer to measure ambient temperature inside the panel Use tester to determine the voltage fluctuation at the power supply terminals is within specifications	13.	Troubleshooting of PLC system	CO3

Pract	ical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 3.4	Test the ground connections of the			
	given PLC.			
LSO 3.5	A given PLC is not working as per the			
	logic instructions investigate the PLC			
	to identify the cause of failure to show			
	the desired output			
LSO 3.6	Investigate the cause of Noise in the			
100 2 7	given PLC			
LSO 3.7	PLC goes on blackout out by losing its			
	operating power. Troubleshoot the			
15038	Troubleshoot the corrupted PLC			
L30 3.8	memory			
150.3.9	Replace CPU and power supply fuses			
200 0.0	in a given PLC system.			
LSO 4.1	Download any open source SCADA	14.	Develop simple SCADA HMI applications using	CO4
	software and install the same.		any one open source SCADA software and	
LSO 4.2	Interpret the available components in		apply dynamic properties	
	symbol factory of SCADA software			
LSO 4.3	Create simple SCADA HMI applications			
	and apply dynamic properties. (Select			
	any three from the given list)			
i.	Turn on and off a tube light using a			
	Switch			
ii.	Apply filling and object size properties			
	to a rectangle, square and round			
	object			
iii.	Move the object, fill the object using			
	slider and meter reading.			
IV.	Apply orientation property to a fan			
V	And control its direction using a slider.			
v.	first then vertically and again			
	horizontally by applying visibility			
	property.			
LSO 4.4	Create historical and real time trends			
	for the given automation			
LSO 5.1	Develop a smart irrigation device to	15.	Develop simple automation systems for the	CO5
	detect the change in moisture level		given requirement (Select any Three from the	
	in the soil and controls the flow of		given list)	
	water accordingly with a DC pump.			
LSO 5.2	Build an electronic device that can			
	remotely control home appliances			
	with your Bluetooth-enabled			
	application			
15053	Develop a PLC program to control			
230 3.5	the robot in such a way that the			
	robot can automatically pick and			
	place components and works in sync			
	with the conveyor belt system.			
LSO 5.4	Develop a Automation system to			
	Open and close the door in the shop			

Practio	cal/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 5.5	Develop a line following robot with RFID sensor for supplying materials and automating workflow.			
LSO 5.6	Develop smart street light controlling mechanism which will Switch on/off the lights automatically depending on the intensity of the sunlight at that particular time of the day.			
LSO 5.7	Develop smart automated railway crossing system to detect train arrival and departure and send appropriate signals to the microcontroller.			

- L) Suggested Term Work and Self Learning: S2400604F Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - i. State three advantages of using programmed PLC timer over mechanical timing relay.
 - ii. It is required to have a pilot light glow, meeting all of the circuit requirements given below:
 - All four circuit pressure Switches must be closed.
 - At least two out of three circuit limit Switches must be closed.
 - The reset Switch must not be closed.
 - iii. Using AND, OR, and NOT gates, design a logic circuit that will solve this hypothetical problem
 - iv. Prepare a comparison chart of different types of PLC
 - v. Prepare a maintenance plan for a given PLC system.

b. Micro Projects:

- 1. Troubleshoot the faulty equipment/kit available in automation laboratory
- 2. Select one industry and analyze the process and propose the automation strategies' that can be used for automation.
- 3. Develop a working model of a given application using given actuators and valves.
- 4. Develop a smart irrigation device to detect the change in moisture level in the soil and controls the flow of water accordingly with a DC pump.
- 5. Build an electronic device that can remotely control home appliances with your Bluetooth-enabled smartphone and a special Android application
- 6. Develop a PLC program to control the robot in such a way that the robot can automatically pick and place components and works in sync with the conveyor belt system.

c. Other Activities:

- 1. Seminar Topics- PLC instructions, Timers and Counters used in a given PLC
- 2. Seminar Topics- Industrial Applications of PLC and SCADA, AGV, Application of automation in different area, trouble shooting of different types of PLC
- 3. Visits Visit any industry with full or semi automation and prepare a report on industrial automation used by the industry in the given section, components used, power requirement, output achieved and maintenance activities required.

- 4. Surveys- Carry out a market/internet survey of PLC and prepare the comparative technical specifications of any one type of PLC (Micro or Mini) of different manufacturer.
- 5. Product Development- Develop a prototype automatic railway crossing system
- a. Software Development- Download any open source software for PLC and install on your laptop/PC and carry out basic PLC programming
- 6. Also download any open source software for SCADA and install on your laptop/PC and carry out basic SCADA HMI programming
- 7. Surveys Carry out a internet based survey to compare SCADA and DCS

d. Self-Learning Topics:

- Basic concepts of working of robot
- Automated material handling.
- Instrumentation systems for inspection and testing for quality of the product
- Use of robots in different applications
- Intelligent Transportation Systems
- Communication standards and protocols used in PLC
- Use of PLC for different industrial applications
- Use of SCADA for different industrial applications
- Interfacing of PLC
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix							
	Theory Asses	sment (TA)**	Term W	ork Assessm	ent (TWA)	Lab Assessment (LA) [#]		
	Progressive	End Theory	Term \	Nork & Self	Learning			
	Theory	Assessment	Assessment		nt	Progressive Lab	End Laboratory	
	Assessment	(ETA)				Accessment	According	
COs	(PTA)		Assignments	Assignments Micro Other		Assessment (DLA)	Assessment (ELA)	
	Class/Mid			Projects	Activities*	(PLA)	(CLA)	
	Sem Test							
CO-1	10%	20%	20%		33%	10%	20%	
CO-2	15%	25%	20%		33%	15%	20%	
CO-3	15%	20%	20%		34%	15%	20%	
CO-4	30%	20%	20%	50%		30%	20%	
CO-5	30%	15%	20%	20% 50%		30%	20%	
Total	30	70	20	20 20 10			30	
Marks				50				

Legend:

- *: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.
- **: Mentioned under point- (N)
- #: Mentioned under point- (O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit	Title and Number	Total	Relevant	Total		ETA (Marks)	
		Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit1.0	Industrial automation Communication and Interfacing	9	CO1	14	5	4	5
Unit2.0	PLC Programming	12	CO2	17	5	6	6
Unit3.0	Installation and maintenance of PLC systems	10	CO3	14	4	5	5
Unit4.0	SCADA and DCS	9	CO4	14	4	5	5
Unit5.0	Applications of Industrial Automation	8	CO5	11	2	4	5
	Total Marks	48		70	20	24	26

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Delevent		PLA/ELA	
S.	Loboratory Drastical Titles	Relevant	Perfo	ormance	Viva-
No.	Laboratory Practical litles	COS Number(a)	PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
1.	Transfer the control data from PLC to PC and vice versa	CO1	50	40	10
2.	Transfer the control data from PLC to PLC	C01	50	40	10
3.	Transfer the sensor data from sensor to PLC to PLC and PC	C01	50	40	10
4.	Interface the given PLC with a PC or a Laptop	CO1	50	40	10
5.	Identify Different parts and front panel indicators of a PLC	CO2	50	40	10
6.	Develop Ladder logic program for different arithmetic operations	CO2	50	40	10
7.	Develop Ladder logic program for different logical operations	CO2	50	40	10
8.	Program Latch and Unlatch circuit in a PLC for motor operation	CO2	50	40	10
9.	Create delay in operation using on delay, off delay and retentive timer function in a given PLC	CO2	50	40	10
10.	Count the number of objects/events using Up counter, Down counter and UP/Down counter in a PLC	CO2	50	40	10
11.	Program PLC using ladder logic to control a LED/Lamp	CO2	50	40	10
12.	Program PLC using ladder logic to control a simple traffic light system	CO2	50	40	10

		Delawart	PLA/ELA			
S.	Laboration Drastical Titles	Relevant	Perfo	Viva-		
No.	Laboratory Practical Titles	COs Number(s)	PRA* (%)	PDA** (%)	Voce (%)	
13.	Use hygrometer to measure the humidity inside the panel	CO3	50	40	10	
14.	Use thermometer to measure ambient temperature inside the panel	CO3	50	40	10	
15.	Use tester to determine the voltage fluctuation at the power supply terminals is within specifications	CO3	50	40	10	
16.	A given PLC is not working as per the logic instructions investigate the PLC to identify the cause of failure to show the desired output	CO3	50	40	10	
17.	Investigate the cause of Noise in the given PLC	CO3	50	40	10	
18.	PLC goes on blackout out by losing its operating power. Troubleshoot the cause of failure.	CO3	50	40	10	
19.	Troubleshoot the corrupted PLC memory.	CO3	50	40	10	
20.	Replace CPU and power supply fuses in a given PLC system	CO3	50	40	10	
21.	Download any open source SCADA software and install the same.	CO4	50	40	10	
22.	Interpret the available components in symbol factory in SCADA software	CO4	50	40	10	
23.	 Create simple SCADA HMI applications and apply dynamic properties (Any Three). i. Turn on and off a tube light using a Switch ii. Apply filling and object size properties to a rectangle, square and round object iii. Move the object, fill the object using slider and meter reading. iv. Apply orientation property to a fan and control its direction using a slider. v. Move a square object horizontally first, then vertically and again horizontally by applying visibility property 	CO4	50	40	10	
24.	Create historical and real time trends for the given automation	CO4	50	40	10	
24	 Select any three of the following: - Develop a smart irrigation device to detect the change in moisture level in the soil and controls the flow of water accordingly with a DC pump. Build an electronic device that can remotely control home appliances with your Bluetooth-enabled smartphone and a special Android application Develop a PLC program to control the robot in such a way that the robot can automatically pick and place components and works in sync with the conveyor belt system. Develop a Automation system to Open and close the door in the shop Develop a line following robot with RFID sensor for supplying materials and automating workflow. Develop smart street light controlling mechanism which 	CO5	60	30	10	

			Polovant	PLA/ELA			
S.		Lobovatow, Dupatical Titles	COc	Performance		Viva-	
No.		Laboratory Practical Titles	COS Number(a)	PRA*	PDA**	Voce	
			Number(s)	(%)	(%)	(%)	
	vii.	the intensity of the sunlight at that particular time of the day. Develop smart automated railway crossing system to detect train arrival and departure and send appropriate signals to the microcontroller.					

Legend:

PRA*: Process Assessment PDA**: Product Assessment

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	SCADA software (reputed make like Allen Bradley, Siemens etc.,)	Ready-to-use symbol library, React and respond in real-time, Real time monitoring, Friendly, manageable, secure, extensible, Easy-to-use, easy to implement, Easy configuration, simplified maintenance, Communication with PLC, easy and flexible alarm definition, data collection and analysis for new and existing systems, easy-to-use for report generation, open access to historical data, different packages available with input/output structure. Open source software SCADA software: like Ellipse/FTVSE/Wonderware/ open SCADA can also be used	14
2.	Universal PLC Training System with HMI (Of reputed make such as Allen bradely, Siemens, etc.,) Compatible with SCADA software	Human Machine Interface (HMI) display, PLC with 16 digital inputs, 16 digital outputs with RS232 communication facility. Open platform to explore wide PLC and HMI applications. Industrial look & feel. Toggle Switches, push to ON Switch, proximity sensor, visual indicator, audio indicator, and DC motor. Experiments configurable through patch board. Powerful instruction sets. Several sample ladder and HMI programs. PC based ladder and HMI programming. Extremely easy and student friendly software to develop different programs. Easy downloading of programs. Practice troubleshooting skills. Compact tabletop ergonomic design. Robust construction. PLC gateway for cloud connectivity. Open source software like Ladder logic simulator, Pico soft Simulator, Logixpro simulator, Simple EDA tools can also be used	1 to 12
3.	Safety gears	Gloves, Safety goggles, Ear protection, Dust masks and respirators.	13
4.	Power tools	Power drills, Orbital sanders, Circular saws, Impact wrenches.	13
5.	Hand tools	Screwdrivers, Hammers, Hand saws, Hex Key Allen Wrench Set Inch and Metric, relay puller, Multi-Tool Wire Stripper/Crimper/Cutter	13

Q) List of Major Laboratory Equipment, Tools and Software:

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

S	Name of Equipment	Broad	Relevant
J.		Cresifications	
NO.	Tools and Software	Specifications	Experiment/Practical
			Number
6.	Electrical tools	Wire and cable strippers, Multimeters- Volts, Ohms, and Amps,	13
		Crimpers- Side Cutter Crimping, Wire Crimp Connector	
		Kit, Digital Multimeter Clamp Meter with Amp, Volt, and	
		Ohm, Non-Contact Voltage Tester	
7.	Spare parts	PLC Programming Cables, SD Card Reader Compact flash, Wire	13
		Nut Set, Fuses- Class J 30, 35, 60, and 100-amp fuses,	
		Class CC 2, 3, 5, 10, 15, 20, and 30-amp fuses, 5mm x	
		20mm 0.032 (for 4-20mA circuits), 0.5, 1, 2, 5, 10, and	
		15 amps, Cube Relays, Resistor Kit, batteries, LED	
		Indicators PLC Processor (CPU), Input/ output module	
8.	Thermo-hygrometer	Measuring range Temp.: -30 60°C / -22 140°F	13
		Measuring range rel. Humidity: 0 100% rh, Measurement	
		protocol as PDF, Data export possible as CSV, Readable without	
		software, data sets of measured values can be stored.	
9.	Digital Hygrometer	maximum humidity measurement- 100%RH, temperature	13
		measurement resolution -0.1egree centigrade, humidity	
		measurement resolution -0.1%RH, minimum operating	
		temperature10 to -20-degree centigrade, Maximum	
		operating temperature +45 to +50 degree centigrade	

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Introduction to Programmable Logic Controllers	Dunning, G.	Thomson /Delmar learning, New Delhi, 2005, ISBN 13: 9781401884260
2.	Programmable Logic Controllers	Petruzella, F.D.	McGraw Hill India, New Delhi, 2010, ISBN: 9780071067386
3.	Programmable Logic Controllers	Hackworth, John; Hackworth, Federic	PHI Learning, New Delhi, 2003, ISBN: 9780130607188
4.	Industrial automation and Process control	Stenerson Jon	PHI Learning, New Delhi, 2003, ISBN: 9780130618900
5.	Programmable Logic Controller	Jadhav, V. R.	Khanna publishers, New Delhi, 2017, ISBN: 9788174092281
6.	Programmable Logic Controllers and Industrial Automation - An introduction,	Mitra, Madhuchandra; Sengupta, Samarjit,	Penram International Publication, 2015, ISBN: 9788187972174
7.	Control System	Nagrath & Gopal	New Age International Pvt Ltd, ISBN: 9789386070111, 9789386070111
8.	Linear Control Systems with MATLAB Applications, Publisher:	Manke, B. S.	Khanna Publishers, ISBN: 9788174093103, 9788174093103
9.	Supervisory Control and Data Acquisition	Boyar, S. A.	ISA Publication, USA, ISBN: 978- 1936007097
10.	Practical SCADA for industry,	Bailey David; Wright Edwin	Newnes (an imprint of Elsevier), UK 2003, ISBN:0750658053

(b) Online Educational Resources:

- 1. Software: www.fossee.com
- 2. Software: www.logixpro.com
- 3. Software: www.plctutor.com
- 4. Software; www.ellipse.com
- 5. PLC lecture: https://www.youtube.com/watch?v=pPiXEfBO2qo
- 6. PLC tutorial: http://users.isr.ist.utl.pt/~jag/aulas/apil3/docs/API_I_C3_3_ST.pdf
- 7. https://www.youtube.com/watch?v=277wwYWolpw-PLC system troubleshooting and repair. Industrial control panel. PLC system repair.
- 8. https://www.youtube.com/watch?v=5Jmtvrch5Jg
- 9. https://www.youtube.com/watch?v=peyV9bwEaLY
- https://www.youtube.com/watch?v=QdJhRmtKpxk&list=RDCMUCke36Liqw5fboMHkq1APZw&index=3
- 11. https://www.youtube.com/watch?v=ygrrRwaJz3M
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested OER, before use by the students.

(c) Others:

- 1. Learning Packages
- 2. Users' Guide
- 3. Manufacturers' Manual
- 4. Lab Manuals

Diploma in Electrical Engineering		Semester- VI	SBTE, Bihar
A) Course Code : 2400604G(T2400604G/P2400604G/S2400604G)			
B)	Course Title	: Electric Vehicle (Advanced)	
C)	Prerequisite Course(s)	: Electric Vehicle (Basics)	
D)	Rationale	:	

Rationale D)

The automobile manufacturing sector in India is rapidly switching over to electric vehicles used for the public as well as private transport. The Govt. of India has launched the FAME-II Scheme (Faster Adoption and Manufacturing of Hybrid & Plug-in Electric Vehicles) to encourage the progressive induction of reliable, affordable and efficient electric and hybrid vehicles and to create demand for Electric Vehicles in the country. The technology is being evolved to enhance the vehicle's efficiency and running mileage by controlling the manufacturing, maintenance and recurring costs of such vehicles. Due to the rapid increase in EV demand, industries will also require skilled manpower in this area. This advanced course on electric vehicles is included as an open elective for all the diploma programmes to provide a sound knowledge of EVs to engineering diploma students and develop skills related to testing and maintenance of various electrical, electronic and mechanical systems in EVs.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the learners' accomplishment of the following course outcomes. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/field/industry.

After completion of the course, the student will be able to-

- CO-1 Compute various parameters affecting Vehicle movement.
- CO-2 Test the operation of the different elements of the Automobile System.
- CO-3 Test the battery and motor used for Power Transmission in EVs.
- CO-4 Test electronic control unit system of EVs.
- CO-5 Interpret the impact of Grid to Vehicle (G2V) and Vehicle to Grid (V2G) during the charging cycle.

F) Suggested Course Articulation Matrix (CAM):

Course	Programme Outcomes (POs)								Programme Specific Outcomes* (PSOs)	
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO-1	PSO-2	
(COs)	Basic and	Problem	Design/	Engineering	Engineering	Project	Life Long			
	Discipline	Analysis	Development	Tools	Practices for Society,	Management	Learning			
	Specific		of Solutions		Sustainability and					
	Knowledge				Environment					
CO-1	3	-	1	2	-	-	1			
CO-2	3	2	2	3	1	-	-			
CO-3	2	2	2	3	3	1	3			
CO-4	2	3	-	2	2	-	2			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

CI:

G) Teaching & Learning Scheme:

Legend:

Course	Course	Scheme of Study (Hours/Week)							
Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (Cl+Ll+TW+SL)	Total Credits (C)		
		L	Т						
2400604G	Electric Vehicle (Advanced)	03	-	04	02	09	06		

Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

		Assessment Scheme (Marks)						
υ		Theory A (Theory Assessment (TA)		Term Work & Self- Learning Assessment (TWA)		Lab Assessment (LA)	
Course Cod	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+T
2400604G	Electric Vehicle (Advanced)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- Separate passing is must for progressive and end semester assessment for both theory and practical.
- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at the course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to the attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020-related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400604G

ſ	Major Theory Session Outcomes (TSOs)	Units	Relevant
			COs
			Number(s)
TSO 1a. TSO 1b.	Explain the vehicle movement process Derive various equations for the movement of	Unit-1.0 Vehicle Dynamics	C01
TSO 1c.	Vehicles Compute different resistances affecting Vehicle movement.	 1.2 Rolling Resistance: Equation, Coefficient, factor affecting rolling resistance, typical values of rolling resistance 	
TSO 1d.	Explain the dynamics of the given type of EV system.	 1.3 Grading resistance 1.4 Road resistance 1.5 Acceleration resistance 1.6 Total driving resistance 1.7 Aerodynamic drag: Equation, typical values of the drag coefficient. 1.8 Vehicle dynamics Hybrid and Electric Vehicles DC Motor Dynamics and Control AC Motor Dynamics and Control 	
TSO 2 a.	Identify the given elements of Automobile Systems.	Unit-2.0 Elements of Automobile	CO2
TSO 2 b.	Describe the functions of the given elements of Automobile Systems.	2.1 Suspension and Damping systems2.2 Brake system: Half-step braking, Full stepBraking	
TSO 2 d.	Braking System for the given braking steps.	2.3 Transaxle 2.4 Elements of Noise Vibration and	
Т50.2 е	AC/DC motors. Describe the Procedure of Installation and Testing	Harshness Control	
TSO 2 f.	of the given EV Charging Stations. Describe the Procedure for Commissioning EV	2.6 Tyre Technology 2.7 AC/DC motor	
TSO 2 g.	Charging Stations. Explain the functions of the EV Control Unit.	 2.8 Air-conditioning and Heating System 2.9 Lighting System 2.10 Automotive wiring system 2.11 Earthing and Insulation 2.12 Charging stations – Installation and Commissioning 2.13 Vehicle control unit 	
TSO 3a.	Compare different power transmission systems	Unit-3.0 EV Power Transmission System	CO3
TSO 3b.	in EVs. List the main Components of the EV Power Train.	3.1 Transmission System : Single and Multi- transmission system	
TSO 3c.	Explain the functions of the given EV Power Train component.	 3.2 EV Power Train 3.3 EV Power Train Components: Battery 	
TSO 3d.	Describe the testing procedure of the given EV Power Train component.	Pack, DC-AC Converter, Electric Motor, On-Board Charger.	
TSO 3e.	Explain the regenerative braking operation in the given EV motor.	3.4 Battery Parameters: Voltage, Current, Charging rate, efficiency, energy density,	
TSO 3f.	Describe the speed control mechanism of the given motor.	power density, state of Charge (SoC), Depth of Discharge (DoD), State of Health (SoH), Operating Temperature, specific	
TSO 38.	battery.	energy, specific power, life cycle and cost. 3.5 Battery Assembly and Dismantling.	
TSO 31.	application.	3.6 Gear and Differential Assembly 3.7 Safe disposal of used battery	
TSO 31. TSO 3j.	Describe the assembling and dismantling procedure of the given battery. Describe the Mechanism of Gear and Differential Assembly.		

ſ	Major Theory Session Outcomes (TSOs)	Units	Relevant
			COs
			Number(s)
TSO 4a. TSO 4b.	Describe the Vehicle Control Unit (VCU). Describe the functions of the given component of the Electronic Control Unit	Unit- 4.0 Vehicle Control Unit (VCU)	CO4
TSO 4c.	Describe the connections of the given control unit with the EV sub-system.	4.1 Electronic Control Onit. Battery Management System, DC-DC Converter, Thermal Management System and Body	
TSO 4d.	Explain the Interaction of Controller Area Network Communication with VCU.	Control Module. 4.2 Predefined functions	
TSO 4e.	Describe the Troubleshooting and Assessment procedure of VCU.	4.3 Connections with EV subsystem4.4 Controller Area Network (CAN) communication	
		4.5 Interaction of CAN Communication with VCU.	
		4.6 Troubleshooting and Assessment	
		4.7 Dynamometers: Introduction	
		4.8 Environmental Chambers	
TSO 5a.	Explain the Classification of Charging Technologies.	Unit- 5.0 EV Charging Technologies	CO5
TSO 5b.	Explain the impact of the Grid on Vehicle Charging and Vehicle Charging on the Grid	5.1 Charging Technology: Classification	
TSO 5c.	Describe the testing procedure of the given Bi- directional charging systems.	 5.3 Vehicle to Grid (V2G) or Vehicle to Buildings (V2B) or Vehicle to Home(V2H). 	
TSO 5d.	Explain the Energy Management Strategies in the EV.	5.4 Bi-directional EV Charging Systems.5.5 Energy Management Strategies.	
TSO 5e.	Explain the Wireless Power Transfer (WPT) technique for EV Charging.	5.6 Wireless Power Transfer (WPT) technique for EV Charging.	

Note: One major TSO may require more than one theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400604G

Pra	ctical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 2.1	Test the operation of the Control Disc Braking system and control the regenerative braking system using a test rig.	1.	 Testing of Control Disc Braking system and Control Regenerative Braking system. 	CO2
LSO 2.2	Torque) of the Disc Braking System in Half step and Full step braking modes.			
LSO 2.3	Test the performance of different types of propulsion motors.	2.	Testing of Motors	
LSO 2.4	Test the continuity of the automotive wiring system in the EV	3.	 Testing of the automotive wiring system. 	
LSO 3.1	Test the performance of a new set of batteries and aged batteries.	4.	Testing of Batteries used in EVs	CO2, CO3
LSO 3.2	 Compare the performance of the battery and find the Fuel Gauge after discharging the battery. a. 0% - 100% b. 30% - 100% c. 50% - 100% 			
LSO 3.3	Evaluate the following parameters of the given EV battery.			
	b. Specific energy			
	c. Life span and			

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
d. Cost parameters			
LSO 3.4 Evaluate the State of Health (SoH) of the given EV Battery after several charge/discharge cycles.			
 LSO 3.5 Test the dynamic performance of the given motor; a) Speed and torque spectrum. b) Speed and torque oscillation c) Friction torque friction spectrum. 	5.	Speed control of Electrical Motors	
 LSO 3.6 Test the following speed-controlled performance characteristics of the given motor; a. Motor voltage over time b. Motor current over time. c. Speed and torque over time. d. Torque over speed. e. Current over speed. f. Electrical input power and the mechanical input power over speed 			
LSO 4.1 Connect the components of the EC Units with EV subsystems.LSO 4.2 Troubleshoot basic faults in the electronic control unit of EV.	6.	 Connection of Electronic Control Unit components Troubleshooting of electronic control unit 	CO4
LSO 5.1 Evaluate the impact of the Grid on Vehicle Charging and Vehicle Charging on the Grid.	7.	Impacts of G2V and V2G	CO 5
LSO 5.2 Prepare a layout of a charging station	8.	Demonstration of Charging stations	

- L) Suggested Term Work and Self-Learning: S2400604G Some sample suggested assignments, micro projects and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/ Problems/ Numerical/ Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

- 1. Design and build a physical model of an EV motor and powertrain components from scratch.
- 2. Build and simulate communication systems of EVs using some software tools.
- 3. Prepare a report on "the way carbon credit works and companies utilize it to reduce their emission values".
- 4. Develop an EV prototype power train using locally procured hardware components.

c. Other Activities:

- 1. Seminar Topics:
 - Safe disposal process of Used Batteries.
 - Charging Technologies used for charging the EV.
 - EV power transmission systems.
- 2. Surveys Visit an electric vehicle manufacturing plant and prepare report on HVAC system used in EV.
3. Self-Learning Topics:

- Impact of fleet charging of EVs on Power Systems.
- Energy Management in EV.
- Fuel Cell powered bus.
- EV Battery disposal and recycling.
- Mobility and connectors.
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use the appropriate assessment strategy and its weightage, in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be used to calculate CO attainment.

			C	ourse Evalua	ation Matrix		
	Theory Asses	sment (TA)**	Term Wo	rk Assessme	nt (TWA)	Lab Assess	ment (LA) [#]
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term	Term Work & Self-Learning Assessment		Progressive Lab Assessment	End Laboratory Assessment
Class/Mid		Assignments	Micro	Other Activities*	(PLA)	(ELA)	
	Sem Test			Projects			
CO-1	20%	15%	20%				
CO-2	20%	20%	20%			35%	25%
CO-3	20%	30%	20%	70%	40%	40%	25%
CO-4	20%	25%	20%	30%	20%	10%	25%
CO-5	20%	10%	20%		40%	15%	25%
Total	30	70	20 20 10			20	30
Marks				50			

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point- (O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of the cognitive domain of the full course.

Unit Title and Number	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Vehicle Dynamics	8	CO1	12	4	5	3
Unit-2.0 Elements of Automobile.	10	CO2	15	5	6	4
Unit-3.0 EV Power Transmission System.	14	CO3	20	4	10	6
Unit-4.0 Vehicle Control Unit (VCU)	10	CO4	15	4	6	5
Unit-5.0 Charging Technologies	6	CO5	8	3	3	2
Total Marks	48		70	20	30	20

Note: Similar table can also be used to design class/mid-term/ internal question papers for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Delevent		PLA/ELA	
S.	Laboratory Drastical Titles	Relevant	Perfor	mance	Viva-
Ν.	N.		PRA*	PDA**	Voce
		Number(s)	(%)	(%)	(%)
1	Testing of Control Disc Braking system and Control Regenerative Braking system.				
2	Testing of Motors.	CO2	60	30	10
3.	Testing of automotive wiring system.				
4.	Testing of Batteries used in EVs	CO2, CO3	60	30	10
5.	Speed control of Electrical Motors		60	30	10
6.	Connection of Electronic Control Unit components	CO4	60	30	10
7.	Troubleshooting of electronic control unit				
8.	Impacts of G2V and V2G	CO 5	30	60	10
9.	Demonstration of Charging stations		70	20	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

- **Note:** This table can be used for both the end semester as well as progressive assessment of practicals. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student's performance.
- P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Disc Braking and Regenerative braking system test rig	Test rig equipment for Demonstration of Disc Braking and Regenerative Braking system operation.	1
2.	Disc Braking System	Test rig / Software for testing the performance of the disc braking system in Half step and Full step braking mode.	1
3.	Induction motor	Induction motor For EV applications with testing kit	2,5
4.	Switched reluctance motor	Switched reluctance motor for EV applications with testing kit	2,5
5.	Permanent magnet (PM) DC motors	Permanent magnet (PM) DC motors for EV applications with testing kit	2,5
6.	Automotive wiring system	Testing facility of automotive wiring system using software /actual EV systems	3

Diploma in Electrical Engineering

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
7.	Lithium Ion and Lead-acid Batteries	12V, 7Ah with testing setup.	4
8.	Nickel-based batteries (metal hydride and cadmium battery).	12V, 7Ah with testing setup.	4
9.	Battery tester	For testing battery parameters	4
10.	Battery charger	Battery charger for EV	4
11.	Battery Management System	Training kit or simulation for BMS	4
12.	DC-DC Converter	48V to 12V bidirectional DC-DC Converter	4
13.	Power Analyser	To observe the impacts of G2V and V2G	5
14.	BMS setup	For Demonstration & training	4
15.	DC power supply	0-32V	5
16.	Charging Station Simulator	For Demonstration & training purposes.	5
17.	EC Unit with EV subsystems	Electronic Control Unit Hardware parts/ software for demonstrating the Connection of Electronic Control Unit components with EV subsystems.	6,7
18.	Facility to demonstrate the impact of the Grid on Vehicle Charging and Vehicle Charging on the Grid.	-	7

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Electric Vehicles: And the End of the ICE age	Anupam Singh	Kindle Edition ASIN: B07R3WFR28
2.	Wireless Power Transfer Technologies for Electric Vehicles (Key Technologies on New Energy Vehicles)	Xi Zhang, Chong Zhu, Haitao Song	Springer Verlag, Singapore; 1st ed. 2022 edition (23 January 2022) ISBN-13: 978-9811683473
3.	Modern Electric, Hybrid Electric, and Fuel Cell Vehicles	EHSANI	CRC Press; Third edition (1 January 2019) ISBN-13: 978-0367137465
4.	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles	John G. Hayes, G. Abas Goodarzi	Wiley; 1st edition (26 January 2018) ISBN-13: 978-1119063643
5.	New Perspectives on Electric Vehicles	Marian Găiceanu (Editor)	IntechOpen (30 March 2022) ISBN-13: 978-1839696145
6.	Electric and Hybrid Vehicles,	Tom Denton, Taylor & Francis	2nd Edition (2020) ISBN- 9780429296109
7.	Hybrid Electric Vehicles: Energy Management Strategies	S. Onori, L. Serrao and G. Rizzoni	Springer (2016) ISBN: 978-1-4471-6781-5
8.	Electric & Hybrid Vehicles	A.K. Babu	Khanna Publishing House, New Delhi, 1st Edition (2018) ISBN: 9789386173713, 9386173719

S. No.		٦	Fitles			Author(s)	Publisher and Edition with ISBN
9.	Power Applicat	Electronics: ions,	Circuits,	Devices	and	Rashid, M. H.	Pearson, 3rd edition, (2013) ASIN: B07HB3BM1W

(b) Online Educational Resources:

- 1. https://www.energy.gov/eere/fuelcells/fuel-cell-systems
- 2. https://powermin.gov.in/en/content/electric-vehicle
- 3. https://www.iea.org/reports/electric-vehicles
- 4. https://www.oercommons.org/search?f.search=Electric+Vehicles
- 5. https://fame2.heavyindustries.gov.in/Index.aspx
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Learning Packages on EV
- 2. EV Users' Guide
- 3. EV Manufacturers' Manual
- 4. EV Lab Manuals

- A) Course Code : 2400604H/T2400604H/P2400604H/S2400604H)
 - Course Title : Robotics (Advanced)
- C) Pre- requisite Course(s) : Robotics (Basic)
- D) Rationale

B)

Efficiency and quality are the demands of industry 4.0. Robotics is a constituent of Industry 4.0 which not only provides the former two but also is beneficial for hazardous and similar challenging situations. The use of robotic technology is developing at a very fast rate in all types of industries whether manufacturing, service or tertiary. Engineers should be competent to use the robotic technology for industry and society advantage. This course aims for the diploma engineers to have advanced skills in robotic applications and use in digital manufacturing.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Plan the use of robots in engineering applications.
- **CO-2** Elucidate the conceptual place of the robotic components for engineering processes.
- **CO-3** Use robots for small automatic robotic applications.
- **CO-4** Compute the economics associated with use of robots in industries.
- **CO-5** Select appropriate robot for industrial requirements and other applications.

F) Suggested Course Articulation Matrix (CAM):

Course Outcomes	Programme Outcomes (POs)								Programme Specific Outcomes* (PSOs)	
(COs)	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO-1	PSO-2	
	Basic and	Problem	Design/Developme	Engineering	Engineering	Project	Life			
	Discipline	Analysis	nt of Solutions	Tools	Practices for	Managem	Long			
	Specific				Society,	ent	Learnin			
	Knowledg				Sustainability		g			
	e				and					
					Environment					
CO-1	-	-	3	-	2	-	2			
CO-2	-	2	3	2	-	-	-			
CO-3	3	2	3	-	-	-	2			
CO-4	3	-	-	2	-	-	-			
CO-5	3	2	-	-	2	-	-			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

* PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Courses	Scheme of Study (Hours/Week)						
Code Title II		Classroom Instruction (Cl)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)	
		L	Т					
2400604H	Robotics (Advanced)							
		03	-	04	02	09	06	

Legend:

- CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)
- LI: Laboratory Instruction (Includes experiments/practical performances/ problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

- SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc
- C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)
- **Note:** TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

		Assessment Scheme (Marks)							
qe		Theory Ass (TA	sessment \)	Term Wo Lear Assessme	rk & Self- ning ent (TWA)	Lab Asse (LA	essment A)	-TWA+LA)	
Course Co	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+	
	Robotics (Advanced)	30	70	20	30	20	30	200	

H) Assessment Scheme:

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: T2400604H

Major Theory Session Outcomes (TSOs)			Units	Relevant
				COs Number(s)
TSO 1a. Define the robots. TSO 1b. Describe t with regar and locati	e need and scope of industrial he concept of robot dynamics rds to methods for orientation on of objects.	Unit- 1.1 1.2	1.0 Robot Kinematics, Dynamics and Industrial Applications Definition need and scope of Industrial robots Robot dynamics – Methods for orientation and location of objects	CO2, CO3
TSO 1c. Analyse ro given 2 DO	obot direct kinematics for the DF planar manipulator.	1.3	Planar Robot Kinematics – Direct and inverse kinematics for 2 Degrees of Freedom.	
TSO 1e. List types given robo	y steps while handling the bt.	1.4	Robot Industrial applications:	
TSO 1f. Interface machine.	robots with the given welding	•	Welding Robots-Welding Guns, Welding Electrodes, Welding Power Sources, shielding	
TSO 1g. Interface machine. TSO 1h. Interface	robots with the given painting	•	gases, Robot Interfacing Spray painting Robots, assembly operation, cleaning.	
assembly	machine.			
TSO 2a. Explain th motion.	e techniques to control robot	Unit-	- 2.0 Robot Drives, Control and Material Handling	CO2, CO3
TSO 2b. Describe t	he given robot drive system.	2.1	Controlling the Robot motion.	
TSO 2c. Describe t	ne types of grippers.	2.2	Position and velocity sensing devices.	
applicatio	n.	2.3	Linear and rotary actuators and control valves	
TSO 2e. Test the d applicatio	esigned gripper for the n.	2.5	Electro hydraulic servo valves, electric drives, motors	
TSO 2f. Use Bar co applicatio	ode technology for robotic ns.	2.6	End effectors – Vacuum, magnetic and air operated grippers	
TSO 2g. Integrate identificat applicatio	radio frequency ion technology in robotic ns.	2.7	Material Handling; automated guided vehicle systems, automated storage and retrieval systems (ASRS)	
TSO 2h. Assemble vehicle fo standard	an automated guided r the given situation using components.	2.8 2.9	Bar code technology Radio frequency identification technology.	
TSO 2i. Assemble storage ar for the giv component	a simple automated nd retrieval systems (ASRS) ren situation using standard nts.			
TSO 3a. Differenti	ate between various work	Unit-	- 3.0 Robot Cell Design and Application	CO3
cell layout	5. ck cell for specific robot	2 1	Robot work cell design control and safety	
with instif	ication.	3.1 3.2	Robot cell lavouts	
TSO 3c. Analyse ro	bot cycle time.	3.3	Multiple Robots and machine interference	
TSO 3d. Explain in	dustrial applications of robotic	3.4	Robot cycle time analysis	
cell.		3.5	Industrial application of robotic cells	
TSO 3e. Follow sat	ety procedures in robotic cell.	Linit	4.0 Robot Drogramming and Economics	CO1 CO4 COE
for the rol	oots	Unit-	of Robotization	01, 04, 05
TSO 4c. Write a	programme in the required	4.1	Characteristics of task level languages through	
language given task	to operate a robot for the	4.2	programming methods Motion interpolation	
TSO 4d. Optimise	obot programming	4.3	Artificial intelligence: Goals of artificial	
paramete	rs. Not on the basis of sucle times		Intelligence, AI techniques, problem	
analysis	bot on the basis of cycle time	44	Problem reduction and solution	
TSO 4f. Conduct a	n economic analysis for use		techniques.	
of robots.		4.5	Application of AI and KBES in Robots	
		4.6	Selection of Robots; Factors influencing	

Majo	or Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 4g	Follow testing methods and acceptance rules for industrial robots.	 the choice of a robot, selection of robot components, robot performance testing, work cycle time analysis 4.7 Economics analysis for robotics, cost data required for the analysis 4.8 Methods of economic analysis; Pay back method, equivalent uniform annual cost method, return on investment method. 4.9 Testing methods and acceptance rules for industrial robots 	
TSO 5a TSO 5b TSO 5c TSO 5d TSO 5d TSO 5e TSO 5f.	 Describe applications of robots in healthcare and medicine. Describe applications of robots in Construction industry. Describe applications of robots in Underground coal mining. Describe applications of robots in uutilities, military & firefighting operations. Describe applications of robots in undersea and space Describe applications of robots in brief in logistics, retail and hospitality, and smart cities. Describe applications of robots in farming and agriculture in brief explain in brief the use of microrobots, nano robots, soft robots, 	 Unit-5.0 Applications in Non-manufacturing Environments 5.1 Applications of Robots in Healthcare and medicine Construction industry Underground coal mines Utilities, military & firefighting operations Undersea Space Logistics, Retail and Hospitality Smart Cities Farming and Agriculture 5.2 Overview of Microrobots, nano robots, soft robots, humanoid robots 	CO5

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: P2400604H

			1
Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1 Identify Wireless Sensor Network. LSO 1.2 Use wireless sensor Network for different robotic applications	1.	Identify different wireless sensor network in robotics viz. ZigBee, LoRa.	CO1, CO3
LSO 2.1 Identify different Radio Frequency (RF) Controlled Wireless LSO 2.2 Use Radio Frequency (RF) Controlled Wireless for different robotic applications.	2.	Use different Radio Frequency (RF) Controlled Wireless Robots.	CO1, CO2
LSO 3.1 Identify the different Voice operated robot with speaker identification technology LSO 3.2 Use different Voice operated robot with speaker identification technology for different robotic applications.	3.	Examine different voice operated robot with speaker identification technology.	CO1, CO3
LSO 4.1 Identify the components required for a computer-controlled pick and place robot (wireless). LSO 4.2 Integrate the components for the required application.	4.	Design a computer-controlled pick and place robot (wireless)	C01

SBTE, Bihar

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 5.1 Identify the components required for a	5.	Design a Zigbee controlled Boat with wireless	CO2, CO3
Zigbee controlled Boat with wireless video		video and voice transmission.	
and voice transmission.			
application.			
LSO 6.1 Identify the components required for a PC	6.	Design a PC controlled wireless Multipurpose	CO2, CO4,
controlled wireless Multipurpose robot for		robot for simple engineering applications.	CO5
engineering applications.			
application			
LSO 7.1 Identify the components required for an	7.	Design an unmanned arial photography system.	CO3, CO5
unmanned arial photography			
LSO 7.2 Integrate the components for the required			
application.		Develop program for real time (apline TDD)	COF
LSO 8.1 Develop a program	8.	Develop program for real time (online TPP) Palletizing and Depalletizing operations through	05
operations through robots.		robots.	
LSO 9.1 Develop a program	9.	Develop TPP / Offline program for vision-based	CO4, CO5
LSO 9.2 Simulate direction control and step		inspection for robots.	
control logic for robotization	10		CO1 CO5
LSO 10.1 Develop a program	10.	Program and simulate coordinated	01,005
part assembly.		robots.	
LSO 11.1 Develop a program.	11.	Develop obstacle avoidance robot	CO1, CO5
LSO 11.2 Simulate obstacle avoidance of robots.		Programming	
LSO 12.1 PLC programming.	12.	Program and simulate welding operation using	CO1, CO5
LSO 12.2 Simulate robotising of welding operation.		robot simulation software.	
LSO 13.1 Simulate robotising of drilling operation.	13.	TPP / Offline program for drilling operation.	CO1, CO5
LSO 14.1Develop a program for an industrial	14.	Program to execute an industrial robot	CO1, CO5
application.		application using a given configuration.	
LSO 14.2Execute the robot programme.	1 -	Analyza Direct Kinomatics of 4 ovic rabet with	603
LEO 15.1 Use robot simulation software for Direct Kinematic analysis unto 4-axis robots	15.	analyse Direct Kinematics of 4-axis robot Using available software	02
LSO 15.2 Correlate the simulated results with			
respective mathematical calculations.			

- L) Suggested Term Work and Self Learning: S2400604H Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

A suggestive list of micro-projects is given here. Similar micro-projects that match the COs could be added by the concerned course teacher. The student should strive to identify eco-friendly or recycled material prior to selection for robotic applications.

- 1. Develop coin separating robot.
- 2. Develop robot using radio frequency sensors for material handling.
- 3. Develop robot for land mine detection.
- 4. Develop a robot for car washing.

Other Activities: c.

- Seminar Topics: Recent developments in the industrial applications of robotics 1.
- 2. Visits: Visit a robotic exhibition.
- Case Study: Identify a robotic application in automobiles and present a case study 3.
- 4. Download videos related to simple robotic applications in domestic and industrial purposes.
- 5. Self-Learning Topics:
 - Robotic component manufacturers
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix									
	Theory Asses	sment (TA)**	Term Wo	ork Assessm	ent (TWA)	Lab Assessment (LA) [#]				
COs	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term V	Term Work & Self- Learning Assessment			End Laboratory Assessment			
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)			
	Sem Test			Projects	Activities*					
CO-1	25%	23%	20%	10%	25%	10%	20%			
CO-2	20 %	23%	20%	10%	25%	20%	20%			
CO-3	15%	17%	20%	25%	25%	20%	20%			
CO-4	20%	20%	20%	15%	25%	20%	20%			
CO-5	20%	17%	20%	40%		30%	20%			
Total	30	70	20	20	10	20	30			
Marks				50		1				

Legend:

*: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

- **: Mentioned under point- (N) #:
 - Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of guestions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Number and Title	Total	Relevant	Total		ETA (Marks)	
	Classroom Instruction (CI) Hours	COs Number (s)	Marks	Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Robot Kinematics, Dynamics and Industrial Applications	12	CO2, CO3	16	6	5	5
Unit– 2.0 Robot Drives, Control and Material Handling	10	CO2, CO3	16	4	8	4
Unit– 3.0 Robot Cell Design and Application	8	CO3	12	2	4	6
Unit- 4.0 Robot Programming and Economics of Robotization	10	CO1, CO4, CO5	14	4	4	6
Unit– 5.0 Applications in Non-manufacturing Environments	8	CO5	12	4	4	4
Total Marks	48		70	20	25	25

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

		Delevent	PLA/ELA			
S.		Relevant	Perfor	mance	Viva-	
No.		Number(c)	PRA*	PDA**	Voce	
		Number(s)	(%)	(%)	(%)	
1.	Identify different wireless sensor network in robotics viz. ZigBee, LoRa.	CO1, CO3	40	50	10	
2.	Use different Radio Frequency (RF) Controlled Wireless Robots.	CO1, CO2	40	50	10	
3.	Examine different voice operated robot with speaker identification technology.	CO1, CO3	40	50	10	
4.	Design a computer-controlled pick and place robot (wireless)	CO1, CO4	40	50	10	
5.	Design a Zigbee controlled Boat with wireless video and voice transmission.	CO2, CO3	40	50	10	
6.	Design a PC controlled wireless Multipurpose robot for simple engineering applications.	CO3, CO4	40	50	10	
7.	Design an unmanned arial photography system.	CO3, CO5	40	50	10	
8.	Develop program for real time (online TPP) Palletizing and Depalletizing operations through robots.	CO5	40	50	10	
9.	Develop TPP / Offline program for vision-based inspection for robots.	CO4, CO5	40	50	10	
10.	Program and simulate coordinated identification, inspection and part assembly for robots.	CO1, CO5	40	50	10	
11.	Develop Obstacle avoidance robot Programming	CO1, CO5	40	50	10	
12.	Program and simulate welding operation using robot simulation software.	CO1, CO5	40	50	10	
13.	TPP / Offline program for drilling operation.	CO1, CO5	40	50	10	
14.	Program to execute an industrial robot application using a given configuration.	CO1, CO5	40	50	10	
15.	Analyse Direct Kinematics of 4-axis robot using available software.	CO2, CO3	40	50	10	

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources(OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

Semester- VI

S. No.	Name of Equipment, Tools	Broad	Relevant
	and Software	Specifications	Experiment/
			Practical
			Number
1.	6 Axis Articulated Robot	Articulated Type	1, 2, 3, 12
	(Material Handling)- 1 No	 Controlled axis: 6-axes (11, 12, 13, 14, 15, 16) 	
		 Boach: 717 mm 	
		• Reach. / 1/ mm	
		Installation Floor, Opside-down (Angle mount)	
		Motion range (Maximum Speed)	
		• JI Axis Rotation 7.85 rad/s	
		J2 Axis Rotation 6.63 rad/s	
		• JS AXIS Rotation 9.00 rad/s	
		 J4 AXIS Rotation 9.50 rad/s I5 Avis Potation 9.51 rad/s 	
		 I6 Avis Rotation 17 /5ras/s 	
		Max load capacity Wrist: 4Kg	
		Infax. Ioau capacity withst. 4Kg	
		 Allowable Load moment 16.6 N-m at wrist J4 Axis, J5 Axis, J6 Axis 	
		• Allowable Load inertia).47 kg-m ² at wrist J4 Axis J5 Axis, J6 Axis	
		Repeatability: +/- 0.05mm	
		Mass: 21 Kg Minimum	
		 Installation environment: Ambient temperature: 0 	
		– 45°C	
		Ambient humidity: Normally 75%RH or less. No	
		dew, nor frost allowed.	
2	C Avia Articulated Debet	Vibration Acceleration: 4.9 m/s2 (0.5G or less)	0.0.14
Ζ.	6 AXIS ALLCUIALED RODOL	LINK 1. 300 MM LINK 2. 300 MM Joint actuator: DC	8, 9, 14
	Assembly Drilling) - 1 No	feedback: Provimity Switch Grinner actuator:	
	Assembly, brining, 1 No	Pneumatic Weight of robot: 50 Kg. Accuracy: +0.3	
		Repeatability: ±0.2Tip Velocity range: 500 mm / minPay	
		load capacity: 2 kg (including griper) J1 - Waist: ± 140°J2	
		- Shoulder: -100 - 60°J3 - Elbow: - 70 + 10°J4 - Wrist	
		rotate: ± 70°J5 - Wrist pitch: ± 35°J6 - Wrist roll: ±	
		180°External I/O8 Programmable digital inputs8	
		Programmable digital outputs	
	A mounted vision system with	Integrity Serial Bus System CAN to Build Intelligent	3, 4, 5, 11
3.	software (Free open source	Device Network, Open Hardware Platform. Arduino. to	5, 1, 5, 11
	Robot simulation software)	control Robot sub-Systems of motor-sensor, movable	
		Omni Wheel of Omni-Directional, Actuator operation	
		control by DC Encoder Motor, DC-Motor control and	
		operation by Accelerometer, Gyro, Ultrasonic and PSD	
		sensor, Androx Studio; brushless ILM 70×10 Robo Drive	
		DC motor; sensor-actuator units of ARMAR-4; SD-25-	
		160-2A-GR-BB Harmonic Drive reduction gear unit high	
		gear ratio of 160: 1; structural parts (White) are made	
		auges for torque sensing motor's magnetic	
		incremental encoder (AMS5306) digital buses (SPL or	
		12C): Motor interface PCB includes a 13-Bit	
		temperature-to-digital converter with a temperature	
		range from -40°C to 125°C (Analog Devices ADT7302)	
4.	6-axis Robotics Trainer	Programmable robotic arm with an interactive front	3, 4, 5, 13
		panel. Software to demonstrates functioning of the	
		trainer as well as allows a user to develop their own	
		programs. NV330; 8 bit microcontroller to ARM	
		processors; Record and Play capability; Optional	
1		interfacing with PLC; Touch operated ON/OFF Switch:	

C No	Name of Emilian ant Table	Durand	Delevent
5. NO.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/ Practical Number
		Auto set to home position; Applications can be developed; Data acquisition using USB	
5.	E-Yantra Firebird kit	 Fire Bird V 2560 Robot Spark V Robot Fire Bird V P89V51RD2 adapter card Fire Bird V LPC2148 adapter card LSM303 3 axis digital accelerometer and 3 axes magnetometers L3G4200 3 axis digital gyroscope Gyroscope, accelerometer and GPS interfacing module for the robot GPS receiver Zigbee Modules 100m range Zigbee Modules Adapter Metal-gear Servo Motors Servo Motor Based Gripper kit for the Fire Bird V robot Sharp infrared range sensor (10cm to 500cm) Arduino Uno/Nano Hexapod 16 Programming Software (AVR studio, Keil, AVR Boot loader, Elash Magic) 	1, 3, 5, 6, 7, 10
6.	Robot simulator for Robotics	Educational networking licensed Robotic system with simulation software	2, 8, 10
7.	Assorted sensors	Optical encoders, Acoustic sensors ,IR, Potentiometer, RTD, Thermistor, strain gauge, piezoelectric, etc.	4
8.	Vision equipment	Camera, Imaging Components: Point, Line, Planar and Volume Sensors	1, 4, 10
9.	Raspberry Pi kit	1.2GHz quad-core Broadcom BCM2837 CPU with 1GB DDR2 RAM with in-built Wi-Fi & Bluetooth Video Core IV 3D graphics core 40 pin extended pins - with 27 GPIO pins Micro SD slot Multiple ports: Four USB ports, full sized HDMI, four pole stereo output and composite video port, CSI camera port and DSI display port 10/100 BaseT Ethernet Micro-USB, power source 5V, 2A	7, 9

R) Suggested Learning Resources:

(a) Books:

S.	Titles	Author(s)	Publisher and Edition with ISBN
No.			
1.	Introduction to Robotics Mechanics and Control	John Craig	Pearson Education 978-9356062191
2.	Robotics and controls	Mittal R.K., Nagrath I.J.	Tata McGraw Hill Education Pvt. Ltd.; 2017; 978 -0070482937

	<u> </u>		
S. No.	Titles	Author(s)	Publisher and Edition with ISBN
3.	Robotics and Image Processing: An Introduction	Janaki Raman. P. A	Tata McGraw Hill Publishing company Ltd., 1998; 978- 0074621677
4.	Industrial Robotics -Technology, Programming and Applications	Nicholas Odrey, Mitchell Weiss, Mikell Groover Roger Nagel, Ashish Dutta	McGraw Hill Education; 2nd Edition; 978 -1259006210
5.	Robotic Engineering: an integrated approach	Richard D. Klafter, Thomas A. Thomas A. Chmielewski, Michael Negin	Prentice Hall of India, N. Delhi, 2009; 978-8120308428
6.	Industrial Robotics Technology, Programming and Applications	Mikell P. Groover, Mitchell Weiss, Roger N. Nagel, Nicholas G. Odrey	McGraw-Hill Education, Second Edition, 978-1259006210
7.	Robotics	Appuu Kuttan K. K.	Dreamtech Press, First Edition, 2020, 978-9389583281
8.	Introduction to Robotics: Analysis, Control, Applications	Saeed B. Niku	Wiley; Second Edition, 978-8126533121
9.	Essentials of Robotics Process Automation	S. Mukherjee	Khanna Publication, First Edition, 978-9386173751
10.	Robotics	R R Ghorpade, M M Bhoomkar	Nirali Prakashan 978-9388897020

(b) Online Educational Resources:

- 1. https://web.iitd.ac.in/~saha/ethiopia/appln.pdf
- 2. https://nptel.ac.in/courses/112105249
- 3. https://www.robotsscience.com/industrial/industrial-robots-types-applications-benefits-and-future/
- 4. https://www.marian.ac.in/public/images/uploads/pdf/online-class/MODULE-6%20ROBOTICS%20INDL_APPLNS-converted.pdf
- 5. https://forcedesign.biz/blog/5-common-industrial-robot-applications
- 6. https://www.hitechnectar.com/blogs/top-industrial-robotics-applications-role-of-robots-inmanufacturing/ <u>http://www.robotics.org/</u>
- 7. https://en.wikipedia.org/wiki/Industrial_robot
- 8. https://www.youtube.com/watch?v=fH4VwTgfyrQ
- 9. https://www.youtube.com/watch?v=aW_BM_S0z4k
- 10. https://www.automate.org/industry-insights/smarter-robot-grasping-with-sensorssoftware-the-cloud
- 11. https://robots.ieee.org/robots/?t=all
- 12. https://www.youtube.com/watch?v=fc_Cynqr6jM
- Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested OER, before use by the students.

(c) Others:

1. Learning Packages:

- https://www.edx.org/learn/robotics
- https://www.coursera.org/courses?query=robotics
- https://www.udemy.com/topic/robotics/
- <u>https://library.e.abb.com/public/9a0dacfdec8aa03dc12578ca003bfd2a/Learn%20with%20ABB.</u> %20Robotic%20package%20for%20education.pdf

2. Users' Guide:

- https://roboindia.com/store/DIY-do-it-your-self-educational-kits-robotics-embedded-systemelectronics
- https://www.robomart.com/diy-robotic-kits
- https://www.scientechworld.com/robotics

3. Lab Manuals:

- http://www-cvr.ai.uiuc.edu/Teaching/ece470/docs/ROS_LabManual.pdf
- https://www.jnec.org/labmanuals/mech/be/sem1/Final%20Year%20B.Tech-ROBOTICS%20LAB%20%20MANUAL.pdf

A)	Course Code	: 2420605(P2420605/S2420605)
B)	Course Title	: Major Project
C)	Pre- requisite Course(s)	:
- 1		

D) Rationale

Project work plays a very important role in engineering education in developing core technical skills, soft skills and higher level of cognitive, psychomotor and affective domain skills. Major Project work is normally done when students have acquired sufficient knowledge, skills and attitude and are able to integrate all these, entirely in new situation or task to solve the problems of the industries/field agencies/etc.

Through major project work, students get direct exposure to the world of work in their relevant field. They are intrinsically motivated to explore new things, new methods, new design, many more ideas and also develop out of the box thinking abilities, creative and innovative capabilities. It also develops many soft skills like confidence, communication skills, creative ability, inquisitiveness, learning to learn skills, lifelong learning skills, problem solving skills, management skills, positive attitude, ethics etc.

Normally in a curriculum document, there is a mention of project work indifferent context. In situation one, project work is reflected as micro project under each and every course curricular detailing, in the form of Term work mentioned under different semesters. These projects are normally related to the developing skills in respective course of the specific programme.

In the context of diploma programme in Bihar, minor project work will be carried out in Semester 5 with emphasis on project planning.

Major project work is reflected as a course in the total programme structure, normally at 6thsemester depending on the requirement of the programme. Through major project, students try to bring the industrial/real world problems in institutional setting, may be in collaboration/ networking with industries/field agencies/enterprises as per the requirement of different diploma programmes.

- E) Course Outcomes: After completion of the major project work, students will be able to
 - **CO-1** Integrate the knowledge (K), skills (S), attitudes (A)developed, in a new task or problem identified in the form of project work.
 - **CO-2** Develop higher level of cognitive, psychomotor and affective domain skills relevant to the course/programme.
 - **CO-3** Solve the industrial/real world problems/tasks by Integrating the generic skills/soft skills/employable skills with relevant technical skills.
 - **CO-4** Develop thecapabilities and skills of innovativeness, creativity, resourcefulness, time management, problem solving abilities, interpersonal skills, pro-activeness, cost effectiveness, environment consideration and sustainability.
 - **CO-5** Prepare the project report.

F) Suggested Course Articulation Matrix (CAM):

Course		Programme Specific Outcomes* (PSOs)							
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Proble m Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	2	3	-	-	-	1		
CO-2	3	-	3	-	-	-	1		
CO-3	3	-	3	3	-	-	1		
CO-4	3	2	3	-	2	2	1		
CO-5	3	-	3	-	-	2	-		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

		Scheme of Study (Hours/Week)						
Code	Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)	
		L	Т					
2420605	Major Project	-	-	08	04	12	06	

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			Α	ssessment S	cheme (Mar	·ks)		
		Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		(+TWA+LA)
Course Code	Course Intie	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA
2420605	Major Project	-	-	20	30	50	100	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)
 PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

Semester- VI

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- Separate passing is must for progressive and end semester assessment for both theory and practical.
- ETA & ELA are to be carried out at the end of the term/ semester.
 - Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Suggested Implementation of Major Project:

Under the minor project in fifth semester, project planning is almost over. The projects are identified and allocated to students. Teacher's role is important as they act as guide, facilitator, catalyser, motivator to promote brain storming, thinking, creativity, initiativeness and many other skills in the students. Teachers should help or guide continually to monitor whether the students are proceeding in the right direction as per outcomes to be attained.

It is also suggested that teachers are not supposed to guide and plan each and every step from the point of view of execution of the project, otherwise it will curb the creativity or thinking process of the students. Teachers have to see that he or she is able to create think tank for this fast-technological world of work for the growth of our country. Following points should be taken into consideration while implementing the major project work.

The following steps are undertaken under the major project-

- 1. Design, Development and Execution of the Major Project.
- 2. Quality of Project Report Writing and its Presentation.

1.0 Design, Development and Execution of Major Project:

Projects design, development, execution is done by the students under the guidance and feedback by respective teachers for attainment of courses specific outcomes, POs and PSOs.

Continual Monitoring, feedback and assessment mechanism on weekly progress/updates on action taken on different criteria and sub-criteria of the project work need to be planned for individual and team of students. Path breaking teachers who think out of the box are required to guide, monitor and evaluate the project work.

1.1 Unique Features of Major Project:

Following important characteristic features of project need to be given special emphasis during the implementation and evaluation of the major project work-

- Innovativeness
- Creativity
- Originality
- Pro-activeness
- Initiativeness
- Cost Effectiveness
- Resourcefulness
- Development of Soft Skills/Generic Skills
- Ethical Issues
- Environmental Considerations
- Simulated/Automated Industry's/Improvised Process
- Application or Utility in the World of Work.
- Relevance to the Curriculum
- Mapping of Outcomes of Project with Pos and PSOs (if applicable)
- Feasibility of Implementation of the Project

2.0 Quality of Project Report Writing and its Presentation:

Following points need to be taken care of during report writing, its implementation and evaluation-

- Report writing as per prescribed format
- Clarity of outcomes
- Innovativeness
- Presentation of Data
- Data Analysis, Interpretation and Result
- Quality of Product/Prototype

2.1 Project Report Writing:

The suggested format of the project report is mentioned below for teacher's and students' reference:

- i. Problem Statement/ Project Title
- ii. Abstract
- iii. Literature Review
- iv. Outcomes of the Project
- v. Project Planning, Design and Development
- vi. Methodology
- vii. Implementation and Testing
- viii. Result and its Interpretation
- ix. Summary
- x. References / Bibliography

2.2 Presentation & Discussion:

Quality of presentation of data need to be ensured using the following criteria -

- Clarity in Communication and Presentation
- Voice Audibility
- Use of Media and Methods
- Satisfying the Queries of Audience
- Attainment of Outcomes

2.3 Project's Potential:

Futuristic scope and recommendation for further studies related to project may be assessed from the following criteria -

- Papers Published or Award Received
- Exhibition or Display or Showcase of Project in Competition or Exhibition or Tech Fest
- Evaluation of Working/Testing of Projects or Prototype
- Relevance and Applications in the World of Work
- Recognition in any Form
- Related Areas/Sub Areas for Further Studies

J) Assessment of the Major Project:

For objective, valid and reliable assessment, different tools of assessment such as a checklist, rating scale, assessment rubric, observation schedule, portfolio assessment, incidental records etc. need to be prepared. Even the students may been courage to adopt self-assessment techniques using the assessment rubrics.

The students need to be assessed continuously based on the suggested below mentioned assessment criteria at project planning stage. The project guide must prepare detailed rubric(s) for each criteria to have more valid and reliable assessment. Criteria of assessment of major project work are mentioned below.

Assessment Scheme for Major Project

S.	Suggested Assessment Criteria	Suggested Weightage (%)
No.		
1.	Project Planning during Minor Project Work	
	 1.1 Identification of Area/Problem Statement 1.2 Literature Survey 1.3 Formulation of Project Title 1.4 Clarity in Formulation of Outcomes of The Project 1.5 Preparation of Synopsis 1.6 Presentation of Synopsis 	30
2.	Design, Development and Execution of the Project.	
	2.1 Unique Features of Major Project	45
3.	Quality of Report Writing and Presentation.	
	3.1 Report Writing3.2 Presentation & Discussion3.3 Project's Potential	25
	TOTAL	100

A)	Course Code	: 2400408(T2400408)
В)	Course Title	: Employability Skills Development (Common for all Programmes)
C)	Pre- requisite Course(s)	:

:

D) Rationale

Education may only be enough to qualify for a job, but employability skills are the major criteria to be considered for a job role. Employability skills are building blocks of any career and they equip one to carry out roles in the company to the best of their ability. Employers usually check these employability skills before hiring. These sets of job-readiness skills are behaviors that are necessary for every job and are essential attitudes that enable students to grow in their careers. Employers value employability skills because they regard these as indications of how their employees will get along with other team members and customers, and how efficiently they will be able to handle the job performance and career success. Employers like to hire a technical expert who also displays well-rounded employability skills.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Build resume and showcase portfolio for placement activity.
- **CO-2** Face interviews and participate effectively in Group Discussions.
- **CO-3** Apply engineering tools in work situations and societal processes.

F) Suggested Course Articulation Matrix (CAM):

Course	Programme Outcomes(POs) Course								ne Specific omes* Os)
Outcomes	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PSO-1	PSO-2
(COs)	Basic and	Proble	Design/	Engineering	Engineering	Project	Life Long		
	Discipline	m	Developmen	Tools	Practices for	Management	Learning		
	Specific	Analysis	tof Solutions		Society,				
	Knowledge				Sustainability				
					and				
					Environment				
CO-1	3	-	-	3	-	-	2		
CO-2	3	-	-	_	2	2	3		
CO-3	3	-	-	3	3	2	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Course	Scheme of Study (Hours/Week)							
Code	Course Title	Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (TW+ SL)	Total Hours (CI+LI+TW+SL)	Total Credits (C)		
		L	Т						
2400408	Employability Skills Development	01	-	-	-	01	01		

Legend:

- CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)
- LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)
- Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.
- TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)
- SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.
- C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)
- **Note:** TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

			Α	ssessment S	cheme (Mai	rks)		
		Theory Assessment		Term	Work &	Lab Asso	essment	
		(т/	A)	Self-Le	earning	(L	A)	
				Asses	sment			(A)
	Course This		I	(T\	NA)		1	+H
Course Code	Course Intie	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA+TW
	Employability							
2400408	Skills	25		-				25
	Development							

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

Ma	ijor Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1a. TSO 1b. TSO 1c. TSO 1d. TSO 1d. TSO 1f. TSO 1f.	Perform SWOT analysis and reflect. Develop skills in carrier planning & goal setting Build a Resume using Internet formats. Develop and Design portfolios. Maintain good grooming attire. Introduce oneself to others. Develop a personal website.	 Unit-1.0 Goal Setting 1.1 Career planning, SWOT 1.2 Resume using Internet formats. 1.3 Showcase portfolios. 1.4 Personal grooming. 1.5 Self-Introduction. 1.6 Website Development. 	CO1
TSO 2a. TSO 2b. TSO 2c. TSO 2d. TSO 2e. TSO 2f.	Face interviews and E- Interviews confidently Participate in group discussions. Use Social media for personal enrichment &Netiquette Manage self for higher growth. Use body language for effective communication Manage Emotions for personal growth	 Unit-2.0 Capacity Development 2.1 Interview Skills 2.2 Group Discussion – Do's & don'ts, leadership, Teamwork, how to interrupt, synthesis, and analysis of topics. 2.3 Social Media for Personal Enrichment 2.4 Body language 2.5 Self-Management. 2.6 Emotional Intelligence 	CO2
TSO 3a TSO 3b TSO-3c TSO 3d TSO 3e	Develop & Maintain Social Contacts. Engage in Social Service projects. Collaborate for mutual advantage. Apply QC-Tools in work situations. Practice Lean Manufacturing Techniques for Production and Operations	 Unit-3.0 Utilizing Potential 3.1 Social Networking 3.2 Social Engagements, Volunteering 3.3 Collaboration& Team-work. 3.4 QC-Tools – Check sheets, Fishbone Diagram, Histogram, Pareto chart, Control-chart, Scatter Diagram, Stratification, 3.5 Lean Manufacturing, Kanban, Kaizen, Five S, Poka-yoke, Quality Circle 	CO3

J) Theory Session Outcomes (TSOs) and Units: T2400408

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: - (Not Applicable)

L) Suggested Term Work and Self Learning: Some sample suggested assignments, micro project and other

activities are mentioned here for reference.

a. Assignments:

- 1 Build a resume for Placement Activity.
- 2 Prepare letters for job applications.

b. Micro Projects:

- 1. Prepare collage for personal grooming.
- 2. Develop a showcase portfolio.

- 3. Prepare a collage of different gestures and postures of Body Language.
- 4. Apply Five-S in a work situation.
- 5. Arrange Mock Interviews, appear, and video record. Reflect on your performance.
- 6. Organize Group discussions on current topics and video record. Reflect on your performance

c. Other Activities:

- 1. Seminar Topics:
 - Emotional Intelligence.
 - 21st Century Skills.
 - Multitasking
- 2. Visits: Visit nearby Job Fairs, Career Guidance Fairs, etc.
- 3. Self-Learning Topics:
 - Use of social media.
 - Self-introduction.
 - Self-grooming.
 - QC Tools.
 - Lean Manufacturing,
 - Emotional Intelligence.
- M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

	Course Evaluation Matrix							
	Theory Asses	sment (TA)**	Term W	ork Assessm	nent (TWA)	Lab Assessment (LA) [#]		
Cos	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Term \	Nork & Self Assessmer	Learning nt	Progressive Lab End Laborato Assessment Assessment		
	Class/Mid		Assignments	Micro	Other	(PLA)	(ELA)	
	Sem Test			Projects	Activities*			
CO-1	30%	-	-	-	-	-	-	
CO-2	40%	-	-	-	-	-	-	
CO-3	30%	-	-	-	-	-	-	
Total	25	-	-	-	-	-	-	
Marks			I	-				

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

- **: Mentioned under point- (N)
- #: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: (Not Applicable)

O) Suggested Assessment Table for Laboratory (Practical): (Not Applicable)

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications
1.	Group Discussion Tables and chairs	Round Table with seating arrangement for 15 person
2	Mock Interviews infrastructure	2 parallel mock interview set up with recording facility.
3.	Ear phones	Compatible with mobile phones
4	Headphones	Compatible with laptop/desk top
5	Blue tooth	Compatible with mobile phones.
7.	CC TV Camera	Compatible to record presentations and addresses.
8.	Podium	For presentations on stage.
9.	Public address system	For public meetings.
10.	Full Glass Mirrors For monitoring Body Language	

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Employability Skills Skills for Employability	Dr. M. Sen Gupta	Innovation Publication Pvt Ltd, 2020, ISBN: 978-81-933819-1-5
2.	Employability Skills	Dr. Nishith Rajaram Dubey, Anupam Singh	Indra Publishing House, 2023 ISBN - 978-93-93577-68-9
3.	Organizational Behavior	A. K. Chitale, Rajendra Prasad Mohanty and Dr Nishith Dubey	PHI Learning Pvt Ltd ISBN 978-81-203-4696-3
4.	Managerial Skills	Dr Nishith Dubey & Prof Gitanjali Shrivastava	Shiva Prakashan, Indore, India,2010, ISBN 81-7677-100-7,
5.	Body Language	Allan Pease	Pease International PTY. Ltd Australia
6.	Production and Operations Management Goods & Services approach	Dr S.V Deshmukh, Dr A. K. Chitale and Dr Nishith Dubey	Archers & Elevators publishing house, Bangalore, ISBN 9789386501197

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
7.	Emotional Intelligence	Daniel Goleman	Word Press.Com, 9789382563792
8.	How to win friends and influence people	Dale Carnegie	Srishti Publishers & Distributors, Delhi, India

(b) Online Educational Resources:

1. **4-Year Plan for Career Success:**

https://eng.umd.edu/sites/clark.umd.edu/files/4%20Year%20Plan%20For%20Career%20Success_Cate gorized_1.pdf

2. CAREER DEVELOPMENT GUIDE:

https://www.engineersaustralia.org.au/sites/default/files/content-files/2016-12/career_development_guide_may_2014.pdf

2. Tips for successful career planning:

tips://www.aryacollege.in/tips-for-successful-career-planning-in-2021/

3. Career Planning – Complete Guide:

https://www.mygreatlearning.com/blog/what-is-career-planning/

- 5. Build Resume: https://www.themuse.com/advice/how-to-make-a-resume-examples
- 6. Build Resume https://resumegenius.com/blog/resume-help/how-to-write-a-resume
- 7. Body Language: https://ubiquity.acm.org/article.cfm?id=3447263
- 8. Group Discussions: https://brightspeaking.com/en/how-to-effectively-participate-in-a-group-discussion/
- 9. Carrier planning & goal setting: https://www.hays.com.au/career-advice/career-development/settingcareer-goals
- 10. Carrier planning & goal setting: https://www.thebalancemoney.com/step-by-step-guide-to-settingcareer-goals-2059883
- 11. **Collaboration & teamwork:** https://www.indeed.com/career-advice/career-development/teamworkand-collaboration
- 12. Interview skills: https://www.youtube.com/watch?v=IKCTS9dY4h4
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.
 - (c) Others: -

A)	Course Code	: 2400110(T2400110)
B)	Course Title	: Community/ Society Development (Non-Exam Course)
		(AIML, AE, CSE, ELX (R), CHE, EE, ME, ME (Auto), MIE, FTS, CACDDM, FPP)
C)	Pre- requisite Course(s)	:
D)	Rationale	:

Community development is a process in which community members collectively generate solutions to common problems/concerns for improvement in the quality of life of the people. The course in community and society development is essential so that students can be prepared for taking up activities for the welfare and social well-being of the community and society around them. This course has been designed to develop requisite competencies and skills in students so that they can address social problems, develop sustainable solutions that are tailored to local needs and resources, engage with local communities and civil society organizations to promote people's participation in decision-making and accountability, and apply them to community development.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- **CO-1** Identify the issues and problems faced by local communities/societies that can be addressed through community development schemes for sustainable development.
- **CO-2** Prepare an action plan for an identified issue under community development scheme for a selected area.

F) Suggested Course Articulation Matrix (CAM):

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes* (PSOs)	
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Deve lopment of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	2	1	1	3	2	2		
CO-2	3	2	1	1	3	3	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

PSOs will be developed by the respective program coordinator at the institute level. As per the latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Course	Scheme of Study (Hours/Week)								
Title	Classroom (C	Instruction CI)	Notional Hours (TW/ Activities+ SL)	Total Hours	Credits				
	L	т		(CI+TW/ Activities)	(C)				
Community/									
Society	01	-	-	01	01				
Development									

Legend:

- CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)
- LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x Cl hours) + (0.5 x Ll hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

		Assessment Scheme (Marks)						
		Theory Ass (TA	sessment \)	Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		+TWA+LA)
Course Code	Course Title	Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	Total Marks (TA-
2400110	Community/ Society Development	25	-	-	-	-	-	25

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)
 PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes process and product assessment using rating scales and rubrics)
 Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.

Note:

- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.
- I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

I) Theory Session Outcomes (TSOs) and Units: T2400110

Major Theory Session Outcomes (TSOs)			Units	Relevant
				COs
				Number(s)
TSO 1a.	Explain the concept of to Community/Society in Indian Context	Unit	t-1.0 Community and Society Development Framework	CO1
TSO 1b. TSO 1c. TSO 1d. TSO 1e.	Explain the concept of Rural and Urban Society Differentiate between Rural and Urban Societies. Differentiate between Underdevelopment and development. Describe the different components of community development	1.1 1.2 1.3 1.4	Concept of Community/Society Development Difference between Rural and Urban Societies Characteristics of Underdevelopment and development Components of Community Development	
TSO 2a.	Prepare a brief report on Community Development Programmes in India considering the given criteria	Uni	t- 2.0 Community Development Initiatives Community Development Programmes in	CO1, CO2
TSO 2b.	Prepare a brief report on institutions engaged in community development programmes considering the given criteria	2.2	India-Historical perspective Institutions Engaged in Community Development Programmes	
TSO 2c.	Explain the framework of sustainable community development	2.3 2.4	Contemporary Community Development Initiatives. Sustainable Community Development	
TSO 3a.	Explain Role of Technical Intuitions in	Unit	t-3.0 Community Development Schemes	CO3. CO4
TSO 3b.	 Community/Society development. Summarise the activities undertaken by technical institutions under community development through polytechnic scheme Prepare a plan for undertaking project to support Unnat Bharat Abhiyan 		Role of polytechnics in Community development. Scheme of Community Development through	
TSO 3c.			Polytechnics Unnat Bharat Abhiyan	

Note: One major TSO may require more than one Theory session/Period.

- J) Suggested Term Work/ Activities and Self Learning: Some sample suggested assignments, micro project and other activities are mentioned here for reference.
 - **a. Assignments**: Specific assignments will be given to students for preparing report on community development programmes and institutions engaged in community development programmes.

b. Micro Projects:

- 1. Suggest solution for flowing water near a water source.
- 2. Identify locally available construction materials in a village.
- 3. Suggest a plan for disposal of solid waste in a village.
- 4. Prepare a plan for use of solar light equipments at streets and public places.

c. Other Activities:

- 1. Seminar Topics:
 - Issues of development for a village near to the institution.
 - Activities to be undertaken by the polytechnic in a village.
 - Characteristics of Development and underdevelopment.

- 2. Visits: Visit to nearby village may be arranged and students may be asked to prepare list of development activities in different Discipline.
- 3. Self-Learning Topics:
 - Community Development programmes in India after independence.
 - Schemes of GOI for Community /society Development.
- K) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

L) List of Major Laboratory Equipment, Tools and Software:(Not Applicable)

M) Suggested Learning Resources:

(a) Books and Reports:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Module on Rural Development: Indian Context	IGNOU, New Delhi	Published by IGNOU, New Delhi
2.	Module on Rural Development Programmes	IGNOU, New Delhi	Published by IGNOU, New Delhi
3.	Module on Rural development planning and management	IGNOU, New Delhi	Published by IGNOU, New Delhi
4.	India's Developing Villages	G R Madan	Allied Publishers, 1990
5.	Five year plans, Plan Documents, Policy and Reports	Planning Commission of India publications	Planning Commission of India
6.	Scheme of Community Development through Polytechnics	Ministry of Human Resourse Development, Shastri Bhavan ,New Delhi	Ministry of Human Resourse Development, Govt of India, New Delhi

(b) Online Educational Resources:

- 1. https://www.google.co.in/books/edition/Rural_Development/hABduOX-XgC?hl=en&gbpv=1&dq=rural+development+latest+books&printsec=frontcover
- 2. https://www.india.gov.in/my-government/documents/plan-document
- 3. https://www.india.gov.in/website-planning-commission
- **Note:** Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

- 1. Project Reports Available in the office of CEO, Zila Parishad of the District.
- 2. Schemes of various departments of Bihar Government for Community/Social Development
